Необходимое условие регулярности граничной точки для вырождающихся параболических уравнений с измеримыми коэффициентами
Доведено необхідну умову регулярності точки на циліндричній границі для розв'язків квазілінійних параболічних рівнянь другого порядку дивергентної форми, коефіцієнти яких мають надлінійний ріст відносно похідних за просторовими змінними. Ця умова збігається з достатньою умовою, доведеною раніше...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2004 |
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут математики НАН України
2004
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/163778 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Необходимое условие регулярности граничной точки для вырождающихся параболических уравнений с измеримыми коэффициентами / И.И. Скрыпник // Український математичний журнал. — 2004. — Т. 56, № 6. — С. 818–836. — Бібліогр.: 6 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Доведено необхідну умову регулярності точки на циліндричній границі для розв'язків квазілінійних параболічних рівнянь другого порядку дивергентної форми, коефіцієнти яких мають надлінійний ріст відносно похідних за просторовими змінними. Ця умова збігається з достатньою умовою, доведеною раніше автором. Тим самим отримано критерій регулярності граничної точки, аналогічний відомому критерію Вінера для рівняння Лапласа.
We prove a necessary condition for the regularity of a point on a cylindrical boundary for solutions of second-order quasilinear parabolic equations of divergent form whose coefficients have a superlinear growth relative to derivatives with respect to space variables. This condition coincides with the sufficient condition proved earlier by the author. Thus, we establish a criterion for the regularity of a boundary point similar to the well-known Wiener criterion for the Laplace equation.
|
|---|---|
| ISSN: | 1027-3190 |