The Lyapunov–Schmidt Approach to Studying Homoclinic Splitting in Weakly Perturbed Lagrangian and Hamiltonian Systems
We analyze the geometric structure of the Lyapunov–Schmidt approach to studying critical manifolds of weakly perturbed Lagrangian and Hamiltonian systems. Наведено аналіз геомеїричпої структури методу Ляпунова - Шмідта для вивчення критичних многовидів слабкозбурених лагранжевих і гамільтонових сист...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2003 |
| Main Authors: | Samoilenko, A.M., Prykarpatsky, A.K., Samoylenko, V.Hr. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2003
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/163804 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | The Lyapunov–Schmidt Approach to Studying Homoclinic Splitting in Weakly Perturbed Lagrangian and Hamiltonian Systems / A.M. Samoilenko, A.K. Prykarpatsky, V.Hr. Samoylenko // Український математичний журнал. — 2003. — Т. 55, № 1. — С. 66–74. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
The Reduction Method in the Theory of Lie-Algebraically Integrable Oscillatory Hamiltonian Systems
by: Prykarpatsky, A.K., et al.
Published: (2003) -
On the Lagrangian and Hamiltonian aspects of infinite-dimensional dynamical systems and their finite-dimensional reductions
by: Prykarpatsky, Y.A., et al.
Published: (2005) -
The Lagrangian and Hamiltonian analysis of some relativistic electrodynamics models and their quantization
by: Bogolubov (Jr.), N.N., et al.
Published: (2009) -
Bounded solutions of the nonlinear Lyapunov equation and homoclinic chaos
by: O. A. Boichuk, et al.
Published: (2019) -
Multisymplectic Lagrangian and Hamiltonian Formalisms of Classical Field Theories
by: Román-Roy, N.
Published: (2009)