Разложение по обобщенным собственным векторам и диагонализация самосопряженного абсолютно непрерывного сингулярного интегрального оператора

Описано зв'язок між розкладанням самоспряженого оператора за узагальненими власними векторами та прямим інтегралом гільбертових просторів. Проведено явну діагоналізацію самоспряженого абсолютно неперервного сингулярного інтегрального оператора Y за допомогою ермітово-невід'ємного ядра, скл...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2003
1. Verfasser: Воробьев, И.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут математики НАН України 2003
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/163814
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Разложение по обобщенным собственным векторам и диагонализация самосопряженного абсолютно непрерывного сингулярного интегрального оператора / И.В. Воробьев // Український математичний журнал. — 2003. — Т. 55, № 1. — С. 138–145. — Бібліогр.: 11 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Описано зв'язок між розкладанням самоспряженого оператора за узагальненими власними векторами та прямим інтегралом гільбертових просторів. Проведено явну діагоналізацію самоспряженого абсолютно неперервного сингулярного інтегрального оператора Y за допомогою ермітово-невід'ємного ядра, складеного із межових значень визначальної функції оператора Т=X+iY відносно резольвенти уявної частини Y. We describe the relationship between the expansion of a self-adjoint operator in generalized eigenvectors and the direct integral of Hilbert spaces. We perform the explicit diagonalization of a self-adjoint absolutely continuous singular integral operator Y using an Hermitian nonnegative kernel consisting of boundary values of the determining function of the operator T = X + iY with respect to the resolvent of the imaginary part of Y.
ISSN:1027-3190