The Jacobi Field of a Lévy Process

We derive an explicit formula for the Jacobi field that is acting in an extended Fock space and corresponds to an ( R -valued) Lévy process on a Riemannian manifold. The support of the measure of jumps in the Lévy–Khintchine representation for the Lévy process is supposed to have an infinite number...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:2003
Автори: Berezansky, Yu.M., Lytvynov, E., Mierzejewski, D.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2003
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/163897
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Jacobi Field of a Lévy Process / Yu.M. Berezansky, E. Lytvynov, D.A. Mierzejewski // Український математичний журнал. — 2003. — Т. 55, № 5. — С. 706–710. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We derive an explicit formula for the Jacobi field that is acting in an extended Fock space and corresponds to an ( R -valued) Lévy process on a Riemannian manifold. The support of the measure of jumps in the Lévy–Khintchine representation for the Lévy process is supposed to have an infinite number of points. We characterize the gamma, Pascal, and Meixner processes as the only Lévy process whose Jacobi field leaves the set of finite continuous elements of the extended Fock space invariant. Виведено явну формулу для поля Якобі, що діє в розширеному фоківському просторі і відповідає деякому ( R-значному) процесу Леві на рімановому многовиді. Припускається, що міра стрибків у зображенні Леві - Хінчина для процесу Леві має носій з нескінченного числа точок. Гамма-, Паскаль- і Мейкснер-процеси характеризуються як такі, для яких відповідне поле Якобі залишає інваріантною множину фінітних неперервних елементів розширеного фоківського простору.
ISSN:1027-3190