Стійкість обмежених розв'язків диференціальних рівнянь з малим параметром у банаховому просторі
Доведено, що для секторіальиого оператора AA зі спектром σ(A), який діє на комплексному банаховому просторі B. Умова σ(A) ∩ i R = Ø є достатньою для того, щоб диференціальне рівняння з малим додатним параметром εx′ε′(t)+x′ε(t)=Axε(t)+f(t),t ∈ R, мало єдиний обмежений розв'язок лє для довільної...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 2003 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Інститут математики НАН України
2003
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/163915 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Стійкість обмежених розв'язків диференціальних рівнянь з малим параметром у банаховому просторі / М.Ф. Городній // Український математичний журнал. — 2003. — Т. 55, № 7. — С. 889–900. — Бібліогр.: 8 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Доведено, що для секторіальиого оператора AA зі спектром σ(A), який діє на комплексному банаховому просторі B. Умова σ(A) ∩ i R = Ø є достатньою для того, щоб диференціальне рівняння з малим додатним параметром εx′ε′(t)+x′ε(t)=Axε(t)+f(t),t ∈ R, мало єдиний обмежений розв'язок лє для довільної обмеженої функції f: R→B, що задовольняє певну умову Гельдера. Також встановлено, що при ε→0+ обмежені розв'язки таких рівнянь збігаються рівномірно на R до єдиного обмеженого розв'язку диференціального рівняння x'(t)=Ax(t)+f(t).
For a sectorial operator A with spectrum σ(A) that acts in a complex Banach space B, we prove that the condition σ(A) ∩ i R = Ø is sufficient for the differential equation εx′ε′(t)+x′ε(t)=Axε(t)+f(t), t ∈ R, where ε is a small positive parameter, to have a unique bounded solution xε for an arbitrary bounded function f: R → B that satisfies a certain Hölder condition. We also establish that bounded solutions of these equations converge uniformly on R as ε → 0+ to the unique bounded solution of the differential equation x′(t) = Ax(t) + f(t).
|
|---|---|
| ISSN: | 1027-3190 |