О модифицированном сильном двоичном интеграле и производной
Для функцій f∈L(R₊) визначено модифікований сильний двійковий інтеграл J(f)∈L(R₊) та модифіковану сильну двійкову похідну D(f)∈L(R₊). Отримано необхідну та достатню умову існування модифікованої о сильного двійкового інтеграла J(f) . За умови ∫R₊f(x)dx=0 доведено рівності J(D(f))=f та D(J(f))=f. Зна...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 2002 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут математики НАН України
2002
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/164034 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | О модифицированном сильном двоичном интеграле и производной / Б.И. Голубов // Український математичний журнал. — 2002. — Т. 54, № 5. — С. 628–638. — Бібліогр.: 15 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Для функцій f∈L(R₊) визначено модифікований сильний двійковий інтеграл J(f)∈L(R₊) та модифіковану сильну двійкову похідну D(f)∈L(R₊). Отримано необхідну та достатню умову існування модифікованої о сильного двійкового інтеграла J(f) . За умови ∫R₊f(x)dx=0 доведено рівності J(D(f))=f та D(J(f))=f. Знайдено зліченну множину власних функцій операторів J та D. Доведено, що лінійна оболонка L цієї множини є щільною у двійковому просторі Харді H(R₊). Для функцій f∈H(R₊) означено модифікований рівномірний двійковий інтеграл J(f)∈L∞(R₊).
For functions f ∈ L(R₊), we define a modified strong dyadic integral J(f) ∈ L(R₊) and a modified strong dyadic derivative D(f) ∈ L(R₊). We establish a necessary and sufficient condition for the existence of the modified strong dyadic integral J(f). Under the condition ∫R₊f(x)dx = 0, we prove the equalities J(D(f)) = f and D(J(f)) = f. We find a countable set of eigenfunctions of the operators J and D. We prove that the linear span L of this set is dense in the dyadic Hardy space H(R₊). For the functions f ∈ H(R₊), we define a modified uniform dyadic integral J(f) ∈ L ∞(R₊).
|
|---|---|
| ISSN: | 1027-3190 |