A result on generalized derivations on right ideals of prime rings
Let R be a prime ring of characteristic other than 2 and let I be a nonzero right ideal of R. Also let U be the right Utumi quotient ring of R and let C be the center of U. If G is a generalized derivation of R such that [[G(x), x], G(x)] = 0 for all x ∈ I, then R is commutative or there exist a, b...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 2012 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2012
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/164134 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | A result on generalized derivations on right ideals of prime rings / C. Demir, N. Arga // Український математичний журнал. — 2012. — Т. 64, № 2. — С. 165-175. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Let R be a prime ring of characteristic other than 2 and let I be a nonzero right ideal of R. Also let U be the right Utumi quotient ring of R and let C be the center of U. If G is a generalized derivation of R such that [[G(x), x], G(x)] = 0 for all x ∈ I, then R is commutative or there exist a, b ∈ U such that G(x) = ax + xb for all x ∈ R and one of the following assertions is true:
(1) (a - λ)I = (0) = (b + λ)I for some λ ∈ C,
(2) (a - λ)I = (0) for some λ ∈ C and b ∈ C.
Нехай R — просте кiльце, характеристика якого не дорiвнює 2, а I — ненульовий правий iдеал R. Нехай U — праве фактор-кiльце Утумi кiльця R, а C — центр U. Якщо G є узагальненим диференцiюванням R таким, що [[G(x),x],G(x)]=0 для всiх x∈I, то R є комутативним або iснують a,b∈U такi, що G(x)=ax+xb для всiх x∈R i виконується одне з наступних тверджень:
(1)(a−λ)I=(0)=(b+A)Iдля деякогоλ∈C,
(2)(a−λ)I=(0)для деякогоλ∈Cіb∈C.
|
|---|---|
| ISSN: | 1027-3190 |