Bicomplex number and tensor product surfaces in R⁴₂

We show that a hyperquadric M in R⁴₂ is a Lie group by using the bicomplex number product. For our purpose, we change the definition of tensor product. We define a new tensor product by considering the tensor product surface in the hyperquadric M. By using this new tensor product, we classify totall...

Full description

Saved in:
Bibliographic Details
Date:2012
Main Authors: Karakuş, S.Ö., Yayli, Y.
Format: Article
Language:English
Published: Інститут математики НАН України 2012
Series:Український математичний журнал
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/164151
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Bicomplex number and tensor product surfaces in R⁴₂/ S.Ö. Karakuş, Y. Yayli // Український математичний журнал. — 2012. — Т. 64, № 3. — С. 307-317. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We show that a hyperquadric M in R⁴₂ is a Lie group by using the bicomplex number product. For our purpose, we change the definition of tensor product. We define a new tensor product by considering the tensor product surface in the hyperquadric M. By using this new tensor product, we classify totally real tensor product surfaces and complex tensor product surfaces of a Lorentzian plane curve and a Euclidean plane curve. By means of the tensor product surfaces of a Lorentzian plane curve and a Euclidean plane curve, we determine a special subgroup of the Lie group M. Thus, we obtain the Lie group structure of tensor product surfaces of a Lorentzian plane curve and a Euclidean plane curve. Moreover, we obtain left invariant vector fields of these Lie groups. We consider the left invariant vector fields on these groups, which constitute a pseudo-Hermitian structure. By using this, we characterize these Lie groups as totally real or slant in R⁴₂