Bicomplex number and tensor product surfaces in R⁴₂
We show that a hyperquadric M in R⁴₂ is a Lie group by using the bicomplex number product. For our purpose, we change the definition of tensor product. We define a new tensor product by considering the tensor product surface in the hyperquadric M. By using this new tensor product, we classify totall...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 2012 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2012
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/164151 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Bicomplex number and tensor product surfaces in R⁴₂/ S.Ö. Karakuş, Y. Yayli // Український математичний журнал. — 2012. — Т. 64, № 3. — С. 307-317. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-164151 |
|---|---|
| record_format |
dspace |
| spelling |
Karakuş, S.Ö. Yayli, Y. 2020-02-08T17:11:12Z 2020-02-08T17:11:12Z 2012 Bicomplex number and tensor product surfaces in R⁴₂/ S.Ö. Karakuş, Y. Yayli // Український математичний журнал. — 2012. — Т. 64, № 3. — С. 307-317. — Бібліогр.: 13 назв. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/164151 514.7 We show that a hyperquadric M in R⁴₂ is a Lie group by using the bicomplex number product. For our purpose, we change the definition of tensor product. We define a new tensor product by considering the tensor product surface in the hyperquadric M. By using this new tensor product, we classify totally real tensor product surfaces and complex tensor product surfaces of a Lorentzian plane curve and a Euclidean plane curve. By means of the tensor product surfaces of a Lorentzian plane curve and a Euclidean plane curve, we determine a special subgroup of the Lie group M. Thus, we obtain the Lie group structure of tensor product surfaces of a Lorentzian plane curve and a Euclidean plane curve. Moreover, we obtain left invariant vector fields of these Lie groups. We consider the left invariant vector fields on these groups, which constitute a pseudo-Hermitian structure. By using this, we characterize these Lie groups as totally real or slant in R⁴₂ Iз використанням добутку бiкомплексних чисел показано, що гiперквадрика M у R⁴₂ є групою Лi. Для досягнення нашої мети модифiковано означення тензорного добутку. Новий тензорний добуток означено шляхом розгляду поверхнi тензорного добутку в гiперквадрицi M. За допомогою цього нового добутку класифiковано тотально дiйснi поверхнi тензорного добутку та комплекснi поверхнi тензорного добутку плоскої кривої Лоренца та евклiдової плоскої кривої. За допомогою поверхонь тензорного добутку плоскої кривої Лоренца та евклiдової плоскої кривої отримано спецiальну пiдгрупу групи Лi M. Таким чином, отримано структуру групи Лi для поверхонь тензорного добутку плоскої кривої Лоренца та евклiдової плоскої кривої. Крiм того, отримано лiвоiнварiантнi векторнi поля цих груп Лi. Розглянуто лiвоiнварiантнi векторнi поля на цих групах, якi утворюють псевдоермiтову структуру. Це дає змогу охарактеризувати групи Лi як тотально дiйснi або скiснi в R⁴₂. en Інститут математики НАН України Український математичний журнал Статті Bicomplex number and tensor product surfaces in R⁴₂ Поверхнi добутку бiкомплексних чисел та тензорного добутку в R⁴₂ Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Bicomplex number and tensor product surfaces in R⁴₂ |
| spellingShingle |
Bicomplex number and tensor product surfaces in R⁴₂ Karakuş, S.Ö. Yayli, Y. Статті |
| title_short |
Bicomplex number and tensor product surfaces in R⁴₂ |
| title_full |
Bicomplex number and tensor product surfaces in R⁴₂ |
| title_fullStr |
Bicomplex number and tensor product surfaces in R⁴₂ |
| title_full_unstemmed |
Bicomplex number and tensor product surfaces in R⁴₂ |
| title_sort |
bicomplex number and tensor product surfaces in r⁴₂ |
| author |
Karakuş, S.Ö. Yayli, Y. |
| author_facet |
Karakuş, S.Ö. Yayli, Y. |
| topic |
Статті |
| topic_facet |
Статті |
| publishDate |
2012 |
| language |
English |
| container_title |
Український математичний журнал |
| publisher |
Інститут математики НАН України |
| format |
Article |
| title_alt |
Поверхнi добутку бiкомплексних чисел та тензорного добутку в R⁴₂ |
| description |
We show that a hyperquadric M in R⁴₂ is a Lie group by using the bicomplex number product. For our purpose, we change the definition of tensor product. We define a new tensor product by considering the tensor product surface in the hyperquadric M. By using this new tensor product, we classify totally real tensor product surfaces and complex tensor product surfaces of a Lorentzian plane curve and a Euclidean plane curve. By means of the tensor product surfaces of a Lorentzian plane curve and a Euclidean plane curve, we determine a special subgroup of the Lie group M. Thus, we obtain the Lie group structure of tensor product surfaces of a Lorentzian plane curve and a Euclidean plane curve. Moreover, we obtain left invariant vector fields of these Lie groups. We consider the left invariant vector fields on these groups, which constitute a pseudo-Hermitian structure. By using this, we characterize these Lie groups as totally real or slant in R⁴₂
Iз використанням добутку бiкомплексних чисел показано, що гiперквадрика M у R⁴₂ є групою Лi. Для досягнення нашої мети модифiковано означення тензорного добутку. Новий тензорний добуток означено шляхом розгляду поверхнi тензорного добутку в гiперквадрицi M. За допомогою цього нового добутку класифiковано тотально дiйснi поверхнi тензорного добутку та комплекснi поверхнi тензорного добутку плоскої кривої Лоренца та евклiдової плоскої кривої. За допомогою поверхонь тензорного добутку плоскої кривої Лоренца та евклiдової плоскої кривої отримано спецiальну пiдгрупу групи Лi M. Таким чином, отримано структуру групи Лi для поверхонь тензорного добутку плоскої кривої Лоренца та евклiдової плоскої кривої. Крiм того, отримано лiвоiнварiантнi векторнi поля цих груп Лi. Розглянуто лiвоiнварiантнi векторнi поля на цих групах, якi утворюють псевдоермiтову структуру. Це дає змогу охарактеризувати групи Лi як тотально дiйснi або скiснi в R⁴₂.
|
| issn |
1027-3190 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/164151 |
| fulltext |
|
| citation_txt |
Bicomplex number and tensor product surfaces in R⁴₂/ S.Ö. Karakuş, Y. Yayli // Український математичний журнал. — 2012. — Т. 64, № 3. — С. 307-317. — Бібліогр.: 13 назв. — англ. |
| work_keys_str_mv |
AT karakusso bicomplexnumberandtensorproductsurfacesinr42 AT yayliy bicomplexnumberandtensorproductsurfacesinr42 AT karakusso poverhnidobutkubikompleksnihčiseltatenzornogodobutkuvr42 AT yayliy poverhnidobutkubikompleksnihčiseltatenzornogodobutkuvr42 |
| first_indexed |
2025-11-24T04:53:01Z |
| last_indexed |
2025-11-24T04:53:01Z |
| _version_ |
1850842279465451520 |