Bicomplex number and tensor product surfaces in R⁴₂
We show that a hyperquadric M in R⁴₂ is a Lie group by using the bicomplex number product. For our purpose, we change the definition of tensor product. We define a new tensor product by considering the tensor product surface in the hyperquadric M. By using this new tensor product, we classify totall...
Saved in:
| Date: | 2012 |
|---|---|
| Main Authors: | Karakuş, S.Ö., Yayli, Y. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2012
|
| Series: | Український математичний журнал |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/164151 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Bicomplex number and tensor product surfaces in R⁴₂/ S.Ö. Karakuş, Y. Yayli // Український математичний журнал. — 2012. — Т. 64, № 3. — С. 307-317. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Bicomplex number and tensor product surfaces in R⁴₂
by: Karakuş, S.Ö., et al.
Published: (2012) -
A study on tensor product surfaces in low-dimensional Euclidean spaces
by: Etemad Dehkordy, A.
Published: (2012) -
Balance Systems and the Variational Bicomplex
by: Preston, S.
Published: (2011) -
Monads and tensor products
by: T. Radul
Published: (2017) -
Generalized Weyl theorem and tensor product
by: Rashid, M.H.M.
Published: (2012)