Weak α-skew Armendariz ideals

We introduce the concept of weak α-skew Armendariz ideals and investigate their properties. Moreover, we prove that I is a weak α-skew Armendariz ideal if and only if I[x] is a weak α-skew Armendariz ideal. As a consequence, we show that R is a weak α-skew Armendariz ring if and only if R[x] is a we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2012
Hauptverfasser: Nikmehr, M.J., Pazoki, M., Tavallaee, H.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/164156
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Weak α-skew Armendariz ideals / H.A. Tavallaee, M.J. Nikmehr, M. Pazoki // Український математичний журнал. — 2012. — Т. 64, № 3. — С. 404-414. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-164156
record_format dspace
spelling Nikmehr, M.J.
Pazoki, M.
Tavallaee, H.A.
2020-02-08T17:13:38Z
2020-02-08T17:13:38Z
2012
Weak α-skew Armendariz ideals / H.A. Tavallaee, M.J. Nikmehr, M. Pazoki // Український математичний журнал. — 2012. — Т. 64, № 3. — С. 404-414. — Бібліогр.: 11 назв. — англ.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/164156
512.5
We introduce the concept of weak α-skew Armendariz ideals and investigate their properties. Moreover, we prove that I is a weak α-skew Armendariz ideal if and only if I[x] is a weak α-skew Armendariz ideal. As a consequence, we show that R is a weak α-skew Armendariz ring if and only if R[x] is a weak α-skew Armendariz ring.
Введено поняття слабких α-косих iдеалiв Армендарiза та дослiджено їх властивостi. Крiм того, доведено, що I є слабким α-косим iдеалом Армендарiза тодi i тiльки тодi, коли I[x] є слабким α-косим iдеалом Армендарiза. Як наслiдок, показано, що R є слабким α-косим кiльцем Армендарiза тодi i тiльки тодi, коли R[x] є слабким α-косим кiльцем Армендарiза.
en
Інститут математики НАН України
Український математичний журнал
Статті
Weak α-skew Armendariz ideals
Слабкi α-косi iдеали Армендарiза
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Weak α-skew Armendariz ideals
spellingShingle Weak α-skew Armendariz ideals
Nikmehr, M.J.
Pazoki, M.
Tavallaee, H.A.
Статті
title_short Weak α-skew Armendariz ideals
title_full Weak α-skew Armendariz ideals
title_fullStr Weak α-skew Armendariz ideals
title_full_unstemmed Weak α-skew Armendariz ideals
title_sort weak α-skew armendariz ideals
author Nikmehr, M.J.
Pazoki, M.
Tavallaee, H.A.
author_facet Nikmehr, M.J.
Pazoki, M.
Tavallaee, H.A.
topic Статті
topic_facet Статті
publishDate 2012
language English
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Слабкi α-косi iдеали Армендарiза
description We introduce the concept of weak α-skew Armendariz ideals and investigate their properties. Moreover, we prove that I is a weak α-skew Armendariz ideal if and only if I[x] is a weak α-skew Armendariz ideal. As a consequence, we show that R is a weak α-skew Armendariz ring if and only if R[x] is a weak α-skew Armendariz ring. Введено поняття слабких α-косих iдеалiв Армендарiза та дослiджено їх властивостi. Крiм того, доведено, що I є слабким α-косим iдеалом Армендарiза тодi i тiльки тодi, коли I[x] є слабким α-косим iдеалом Армендарiза. Як наслiдок, показано, що R є слабким α-косим кiльцем Армендарiза тодi i тiльки тодi, коли R[x] є слабким α-косим кiльцем Армендарiза.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/164156
citation_txt Weak α-skew Armendariz ideals / H.A. Tavallaee, M.J. Nikmehr, M. Pazoki // Український математичний журнал. — 2012. — Т. 64, № 3. — С. 404-414. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT nikmehrmj weakαskewarmendarizideals
AT pazokim weakαskewarmendarizideals
AT tavallaeeha weakαskewarmendarizideals
AT nikmehrmj slabkiαkosiidealiarmendariza
AT pazokim slabkiαkosiidealiarmendariza
AT tavallaeeha slabkiαkosiidealiarmendariza
first_indexed 2025-11-25T07:26:19Z
last_indexed 2025-11-25T07:26:19Z
_version_ 1850510281223962624
fulltext UDC 512.5 H. A. Tavallaee (Karaj Branch, Islamic Azad Univ., Karaj, Iran), M. J. Nikmehr (K. N. Toosi Univ. Technology, Tehran, Iran), M. Pazoki (Karaj Branch, Islamic Azad Univ., Karaj, Iran) WEAK α-SKEW ARMENDARIZ IDEAL СЛАБКI α-КОСI IДЕАЛИ АРМЕНДАРIЗА We introduce the concept of weak α-skew Armendariz ideals and investigate their properties. Moreover, we prove that I is a weak α-skew Armendariz ideal if and only if I[x] is a weak α-skew Armendariz ideal. As a consequence, we show that R is a weak α-skew Armendariz ring if and only if R[x] is a weak α-skew Armendariz ring. Введено поняття слабких α-косих iдеалiв Армендарiза та дослiджено їх властивостi. Крiм того, доведено, що I є слабким α-косим iдеалом Армендарiза тодi i тiльки тодi, коли I[x] є слабким α-косим iдеалом Армендарiза. Як наслiдок, показано, що R є слабким α-косим кiльцем Армендарiза тодi i тiльки тодi, коли R[x] є слабким α-косим кiльцем Армендарiза. 1. Introduction. In [11], Rege and Chhawchharia introduced the notion of an Armendariz ring. They defined a ring R (associative with identity) to be an Armendariz ring if whenever polynomials f(x) = a0 + a1x + . . . + amx m, g(x) = b0 + b1x + . . . + bnx n ∈ R[x] satisfy f(x)g(x) = 0, then aibj = 0 for each i, j. (The converse is always true.) Some properties of Armendariz rings were given in [1, 2, 5, 6, 11]. Throughout this paper R denotes an associative ring with identity. A ring R is called semicommutative if for any a, b ∈ R, ab = 0 implies aRb = 0. The name Armendariz ring was chosen because Armendariz [2] (Lemma 1) had noted that a reduced ring (i.e., a2 = 0 implies a = 0) satisfies this condition. Zhongkui Liu and Renyu Zhao [9] studied a generalization of Armendariz ring, which is called weak Armendariz ring. A ring R is called weak Armendariz if whenever f(x) = a0 + a1x + . . . + amx m, g(x) = b0 + b1x + . . . + bnx n ∈ R[x], with ai, bj ∈ R satisfy f(x)g(x) = 0, then aibj is a nilpotent element of R for each i, j. They have shown that, if R is a semicommutative ring, then the ring R[x] and the ring R[x] (xn) , are weak Armendariz. For an endomorphism α of a ring R, Hong, Kim, and Kwak [3] called R an α-skew Armendariz ring if whenever polynomials f(x) = a0 + a1x + . . . + amx m, g(x) = b0 + b1x + . . . + bnx n ∈ R[x;α] satisfy f(x)g(x) = 0, then aiαi(bj) = 0 for each i and j. Recall from [10] that a one-sided ideal I of a ring R has the insertion of factors property (or simply, IFP) if ab ∈ I implies aRb ⊆ I for a, b ∈ R. Observe that every completely semiprime ideal (i.e., a2 ∈ I implies a ∈ I) of R has the IFP (or R is semicommutative). For any positive integer n, we study in this paper the relationship between ideals of R which are weak α-skew Armendariz and some ideals of the ring Rn(R) =   a a12 . . . a1n 0 a . . . a2n ... ... . . . ... 0 0 . . . a  ∣∣∣∣∣∣∣∣∣∣∣∣ a, aij ∈ R, for all i, j  , c© H. A. TAVALLAEE, M. J. NIKMEHR, M. PAZOKI, 2012 404 ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3 WEAK α-SKEW ARMENDARIZ IDEAL 405 the n-by-n upper triangular matrix ring over R and the ring R[x] (xn) , where (xn) is the ideal generated by xn. Also we show that, if I an ideal of R, then I is a weak α-skew Armendariz if and only if I[x] is a weak α-skew Armendariz ideal. 2. On weak α-skew Armendariz ideals. For an ideal I of R put √ I = { a ∈ R | an ∈ I for some non-negative integer n } . Definition 2.1. Let α be an endomorphism of a ring R, an ideal I of R is said to be weak α-skew Armendariz if whenever polynomials f(x) = a0 + a1x+ . . .+ amx m, g(x) = b0 + b1x+ . . . . . .+ bnx n ∈ R[x] satisfy f(x)g(x) ∈ I[x] then aiαi(bj) ∈ √ I for all i, j. Clearly, if I = 0 is a weak α-skew Armendariz ideal, then R is a weak α-skew Armendariz ring. It is well-known that for a ring R and any positive integer n ≥ 2, R[x] (xn) ∼=   a0 a1 . . . an−1 0 a0 . . . an−2 ... ... . . . ... 0 0 . . . a0  ∣∣∣∣∣∣∣∣∣∣∣∣ ai ∈ R, i = 0, 1, . . . , n− 1  , where (xn) is the ideal of R[x] generated by xn. We introduced a weak α-skew Armendariz ideal in the following example. Example 2.1. Let R be a α-skew Armendariz ring and consider S = {( a b 0 a )∣∣∣∣∣ a, b ∈ R } . It is clear that I = {( 0 b 0 0 )∣∣∣∣∣ b ∈ R } is the ideal of S. Let f(x) = A0 + A1x + . . . + Anx n, g(x) = B0 + B1x + . . . + Bmx m ∈ S[x], where Ai = ( a0i a1i 0 a0i ) , Bj = ( b0j b1j 0 b0j ) for i = 0, . . . , n, j = 0, . . . ,m such that f(x)g(x) ∈ I[x]. Let f(x) = ( α0(x) α1(x) 0 α0(x) ) , g(x) = ( β0(x) β1(x) 0 β0(x) ) , α0(x) = a00 + a01x+ . . .+ a0nx n, β0(x) = b00 + b01x+ . . .+ b0mx m. Since f(x)g(x) ∈ I[x] thus α0(x)β0(x) = 0, also R is an α-skew Armendariz ring and hence a0iα i(b0j) = 0 for all i = 0, . . . , n, j = 0, . . . ,m. Thus Aiαi(Bj) ∈ I for all i = 0, . . . , n, j = 0, . . . ,m. Therefore I is a weak α-skew Armendariz ideal. Lemma 2.1. Let R be a ring and n ≥ 2 a positive integer. Let I0, I1, . . . , In−1 are ideals of R, such that Ii ⊆ Ii+1, i = 0, 1, . . . , n− 2. Then ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3 406 H. A. TAVALLAEE, M. J. NIKMEHR, M. PAZOKI J =   a0 a1 . . . an−1 0 a0 . . . an−2 ... ... . . . ... 0 0 . . . a0  ∣∣∣∣∣∣∣∣∣∣∣∣ ai ∈ Ii, i = 0, 1, . . . , n− 1  is an ideal of R[x] (xn) . Proof. It is straightforward. We note that, in Proposition 2.1 and Theorem 2.1, I0 and J are ideals that mentioned in Lemma 2.1. Proposition 2.1. Let Ai =  ai0 ai1 . . . ain−1 0 ai0 . . . ain−2 ... ... . . . ... 0 0 . . . ai0  , Bj =  bj0 bj1 . . . bjn−1 0 bj0 . . . bjn−2 ... ... . . . ... 0 0 . . . bj0  ∈ R[x] (xn) such that (ai0α i(bj0)) k ∈ I0 for any i, j and some integer k. Then (Aiα i(Bj)) nk ∈ J. Proof. We proceed by induction on n. Let n = 2. For a positive integer k, (Aiα i(Bj)) k = = ( (ai0α i(bj0)) k c 0 (ai0α i(bj0)) k ) and that (Aiα i(Bj)) 2k = ( (ai0α i(bj0)) 2k (ai0α i(bj0)) kc+ c(ai0α i(bj0)) k 0 (ai0α i(bj0)) 2k ) . Hence (Aiα i(Bj)) 2k ∈ J, since ( ai0α i(bj0) )2k , (ai0α i(bj0)) kc+ c(ai0α i(bj0)) k ∈ I0. Now, we have Ai =  ai0 ai1 . . . ain−1 0 ai0 . . . ain−2 ... ... . . . ... 0 0 . . . ai0  ∈ R[x] (xn) and Bj =  bj0 bj1 . . . bjn−1 0 bj0 . . . bjn−2 ... ... . . . ... 0 0 . . . bj0  ∈ R[x] (xn) , such that (ai0α i(bj0)) k ∈ I0 for some integer k. Consider ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3 WEAK α-SKEW ARMENDARIZ IDEAL 407 (Aiα i(Bj)) k =  (ai0α i(bj0)) k c1 . . . cn−1 0 (ai0α i(bj0)) k . . . cn−2 ... ... . . . ... 0 0 . . . (ai0α i(bj0)) k  ∈ J and (Aiα i(Bj)) (n−1)k =  (ai0α i(bj0)) (n−1)k d1 . . . dn−1 0 (ai0α i(bj0)) (n−1)k . . . dn−2 ... ... . . . ... 0 0 . . . (ai0α i(bj0)) (n−1)k  ∈ J. By the induction hypothesis all d,is, except dn−1, are in I0. Let x = (ai0α i(bj0)) kdn−1 + c1dn−2 + . . . . . .+ cn−1(a i 0α i(bj0)) (n−1)k. Hence (Aiα i(Bj)) nk =  (ai0α i(bj0)) nk y1 . . . x 0 (ai0α i(bj0)) nk . . . yn−2 ... ... . . . ... 0 0 . . . (ai0α i(bj0)) nk  ∈ J, since (ai0α i(bj0)) nk, x all y,is are in I0. Proposition 2.1 is proved. Theorem 2.1. I0 is a weak α-skew Armendariz ideal if and only if J is a weak α-skew Armendariz ideal. Proof. (⇒) Let f(y) = A0 + A1y + . . . + Amy m, g(y) = B0 + B1y + . . . + Bty t ∈ R[x] (xn) [y], such that f(y)g(y) ∈ J [y]. Let Ai =  ai0 ai1 . . . ain−1 0 ai0 . . . ain−2 ... ... . . . ... 0 0 . . . ai0  , Bj =  bj0 bj1 . . . bjn−1 0 bj0 . . . bjn−2 ... ... . . . ... 0 0 . . . bj0  for i = 0, 1, . . . ,m, j = 0, 1, . . . , t. Let f0 = a00 +a10y+ . . .+am0 y m and g0 = b00 + b10y+ . . .+ bt0y t. Then f0g0 ∈ I0[y]. Since I0 is weak α-skew Armendariz, there exists k > 0, such that (ai0α ibj0) k ∈ I0 for each i, j. Then (Aiα i(Bj)) nk ∈ J for all i, j, by Proposition 2.1. Therefore J is weak α-skew Armendariz. (⇐) Clear. Theorem 2.1 is proved. ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3 408 H. A. TAVALLAEE, M. J. NIKMEHR, M. PAZOKI It can be simply proved if I be an ideal of ring R, then Tn(I) will also be an ideal of ring Tn(R), where Tn(I) is an upper triangle matrix. By the following example we show that T2(pZ) is a weak α-skew Armendariz ideal. Example 2.2. Let pZ be a prime ideal of Z and α : pZ → pZ be an endomorphism. Then T2(pZ) is a weak α-skew Armendariz ideal. Let γ(x) = n∑ i=0 ( γi0 γi1 0 γi2 ) xi, β(x) = n∑ j=0 ( βj0 βj1 0 βj2 ) xj ∈ T2(Z)[x], such that γ(x)β(x) ∈ T2(pZ)[x]. Let γ(x) = ( γ0(x) γ1(x) 0 γ2(x) ) , β(x) = ( β0(x) β1(x) 0 β2(x) ) . Thus ( γ0(x) γ1(x) 0 γ2(x) )( β0(x) β1(x) 0 β2(x) ) ∈ T2(pZ)[x], and hence we have γ0(x)β0(x) ∈ pZ[x], γ0(x)β1(x) + γ1(x)β2(x) ∈ pZ[x], γ2(x)β2(x) ∈ pZ[x]. Since pZ[x] is a prime ideal of Z, two cases happen for polynomials, Case 1. γ0(x), γ1(x), γ2(x) ∈ pZ[x], therefore( γi0 γi1 0 γi2 ) αi ( βj0 βj1 0 βj2 ) ∈ T2(pZ). Case 2. γ0(x), β2(x) ∈ pZ[x], therefore( γi0 γi1 0 γi2 ) αi ( βj0 βj1 0 βj2 ) ∈ T2(pZ). Thus T2(pZ) is a weak α-skew Armendariz ideal. Let α be an endomorphism of a ring R, Mn(R) be the n × n full matrix ring over R and α : Mn(R) −→Mn(R) defined by α((aij)) = (α(aij)). Then α is an endomorphism of Mn(R). Theorem 2.2. I0 is a weak α-skew Armendariz ideal if and only if J is a weak α-skew Armendariz ideal. ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3 WEAK α-SKEW ARMENDARIZ IDEAL 409 Proof. (⇒) Let f(y) = A0 + A1y + . . .+ Apy p, g(y) = B0 +B1y + . . .+Bqy q ∈ R[x] (xn) [y;α] satisfying f(y)g(y) ∈ J [y], where Ai =  ai ai12 ai1n . . . ai1n 0 ai ai23 . . . ai2n 0 0 ai . . . ai3n ... ... ... . . . ... 0 0 0 . . . ai  and Bj =  bi bi12 bi13 . . . bi1n 0 bi bi23 . . . bi2n 0 0 bi . . . bi3n ... ... ... . . . ... 0 0 0 . . . bi  for i = 0, 1, . . . , p, j = 0, 1, . . . , q. Let f0 = a00+a10y+. . .+ap0y p and g0 = b00+b10y+. . .+bq0y q. Then f0g0 ∈ I0[y]. Since I0 is weak α-skew Armendariz, there exists k > 0, such that (ai0α i(bj0)) k ∈ I0 for each i, j. Then (Aiα i(Bj)) nk ∈ J for all i, j, by Proposition 2.1 and α((aij)) = (α(aij)). Therefore J is a weak α-skew Armendariz ideal. (⇐) Clear. Theorem 2.2 is proved. For the case of weak α-skew Armendariz ideal, we have the following result. Theorem 2.3. Let α be an endomorphism of a ring R and αt = 1R for some positive integer t. Then I is a weak α-skew Armendariz ideal if and only if I[x] is a weak α-skew Armendariz ideal. Proof. (⇒) Assume that I is a weak α-skew Armendariz ideal. Suppose that p(y) = f0(x) + +f1(x)y+. . .+fm(x)ym and q(y) = g0(x)+g1(x)y+. . .+gn(x)yn are in R[x][y;α] with p(y)q(y) ∈ ∈ I[x][y;α]. We also let fi(x) = ai0 + ai1x+ . . .+ aiωix ωi and gj(x) = bj0 + bj1x+ . . .+ bjυjx υj for any 0 ≤ i ≤ m, 0 ≤ j ≤ n, where ai0, ai1, . . . , aiωi , bj0, bj1, . . . , bjυj ∈ R. We claim that fi(x)αi(gj(x)) ∈ √ I[x] for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. Take a positive integer k such that k > deg(f0(x)) + deg(f1(x)) + . . .+ deg(fm(x)) + deg(g0(x)) + deg(g1(x)) + . . .+ deg(gn(x)), where the degree is as a polynomials in R[x] and the degree of the zero polynomial is taken to be 0. Since p(y)q(y) ∈ I[x][y;α], we have f0(x)g0(x) ∈ I[x], f0(x)g1(x) + f1(x)α(g0(x)) ∈ I[x], . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fm(x)αm(gn(x)) ∈ I[x]. (1) Now put f(x) = f0(x t) + f1(x t)xtk+1 + f2(x t)x2tk+2 + . . .+ fm(xt)xmtk+m, g(x) = g0(x t) + g1(x t)xtk+1 + g2(x t)x2tk+2 + . . .+ gn(xt)xntk+n. (2) Note that αt = 1R, then f(x)g(x) = f0(x t)g0(x t) + (f0(x t)g1(x t) + f1(x t)α(g0(x t)))xtk+1 + . . . . . .+ fm(xt)αm(gn(xt))x(m+n)(tk+1). Using (1) and αt = 1R, we have f(x)g(x) ∈ I[x;α]. On the ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3 410 H. A. TAVALLAEE, M. J. NIKMEHR, M. PAZOKI other hand, from (2) we have f(x)g(x) = ( a00 + a01x t + . . .+ a0ω0x ω0t + a10x tk+1 + a11x tk+t+1 + . . . . . .+ a1ω1x tk+ω1t+1 + . . .+ am0x mtk+m + am1x mtk+t+m + . . .+ amωmx mtk+ωmt+m ) × × ( b00 + b01x t + . . .+ b0υ0x υ0t + b10x tk+1 + b11x tk+t+1 + . . .+ b1υ1x tk+υ1t+1 + . . . . . .+ bn0x ntk+n + bn1x ntk+t+n + . . .+ bnυnx ntk+υnt+n ) ∈ I[x;α]. Since I is a weak α-skew Armendariz ideal and αt = 1R, so aiuαi(bjv) = aiuα itk+ut+i(bjv) ∈ √ I for all 0 ≤ i ≤ m and 0 ≤ j ≤ n, u ∈ {0, 1, . . . , ω0, . . . , ωm}, v ∈ {0, 1, . . . , υ0, . . . , υn}. So we have fi(xt)αi(gj(xt)) ∈ √ I[x] for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. Now it is easy to see that fi(x)αi(gj(x)) ∈ √ I[x] for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. Hence I[x] is weak α-skew Armendariz. (⇐) Obviously, if I[x] is weak α-skew Armendariz, then I is weak α-skew Armendariz. Theorem 2.3 is proved. Using Theorem 2.3, we have the following result. Corollary 2.1. Let R be a ring. Then R is weak α-skew Armendariz if and only if R[x] is weak α-skew Armendariz. Before stating Proposition 2.3, we need the following. Proposition 2.2. Suppose that there exists a classical right quotient ring Q of a ring R con- sisting of central elements. If I is IFP, then QI is IFP. Proof. Let αβ ∈ QI with α = u−1a, β = υ−1b in Q such that, u, υ ∈ R and a, b ∈ R. Since Q is contained in the center of R, we have (uυ)−1ab = (u−1υ−1)ab = u−1aυ−1b = αβ ∈ QI, so ab ∈ I, and hence arb ∈ I for all r ∈ R because I is IFP. Now for γ = ω−1r with ω ∈ R and r ∈ R, αγβ = (uωυ)−1arb ∈ QI. Therefore QI is IFP. Proposition 2.2 is proved. A ring R is called right Ore if given a, b ∈ R with b regular there exist a1, b1 ∈ R with b1 regular such that ab1 = ba1. It is a well-known fact that R is a right Ore ring if and only if there exists a classical right quotient ring of R. Let α be an automorphism of a ring R. Suppose that there exists the classical left quotient Q of R. Then for any b−1a ∈ Q, where a, b ∈ R with b regular the induced map α : Q(R) → Q(R) defined by α(b−1a) = (α(b))−1α(a) is also an automorphism. Proposition 2.3. Suppose that there exists the classical left quotient Q of a ring R. If I is IFP, then I is weak α-skew Armendariz if and only if QI is weak α-skew Armendariz. Proof. Suppose that I is weak α-skew Armendariz. Let f(x) = s−10 a0+s−11 a1x+. . .+s−1m amx m and g(x) = t−10 b0 + t−11 b1x + . . . + t−1n bnx n ∈ QI[x;α] such that f(x)g(x) ∈ QI[x]. Let C be a left denominator set. There exist s, t ∈ C and a′i, b ′ j ∈ R such that s−1i ai = s−1a′i and t−1j bj = t−1b′j for i = 0, 1, . . . ,m and j = 0, 1, . . . , n. Then s−1(a′0 + a′1x+ . . .+ a′mx m)t−1(b′0 + + b′1x+ . . .+ b′nx n) ∈ QI[x]. It follows that (a′0 + a′1x+ . . .+ a′mx m)t−1(b′0 + b′1x+ . . .+ b′nx n) ∈ ∈ QI[x]. Thus (a′0t −1 +a′1(α(t))−1x+ . . .+a′m(αm(t))−1xm)(b′0 + b′1x+ . . .+ b′nx n) ∈ QI[x]. For a′i(α i(t))−1, i = 0, 1, . . . , n, there exist t′ ∈ C and a′′i ∈ R such that a′i(α i(t))−1 = t′−1a′′i . Hence ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3 WEAK α-SKEW ARMENDARIZ IDEAL 411 t′−1(a′′0 + a′′1x + . . . + a′′mx m)(b′0 + b′1x + . . . + b′nx n) ∈ QI[x]. We have that (a′′0 + a′′1x + . . . . . .+ a′′mx m)(b′0 + b′1x+ . . .+ b′nx n) ∈ I[x]. Since I is weak α-skew Armendariz, so a′′i α i(b′j) ∈ √ I for all i and j. Suppose that (a′′i α i(b′j)) nij ∈ I. Since I is IFP, QI is IFP. Then (t′−1(a′′i α i(b′j))) nij ∈ ∈ QI . So (a′iα i(t−1b′j)) nij = (a′i(α i(t))−1αi(b′j)) nij = ((t′−1a′′i )α i(b′j)) nij ∈ QI. Similarly we have (s−1i a′i)(α i(t−1j b′j)) nij = (s−1a′i)(α i(t−1b′j)) nij ∈ QI. Therefore QI is weak α-skew Armen- dariz. The converse is clear. Proposition 2.3 is proved. We study the relationship between ideals of R which are weak α-skew Armendariz with some ideals of the ring Rn(R). Lemma 2.2. Let I, Iij be ideals of R such that I ⊆ Iij ⊆ Iis for 1 ≤ i < j ≤ s ≤ n, and Ipq ⊆ Ilq for q = 3, . . . , n, 2 ≤ l ≤ p ≤ n. Then J =   a a12 . . . a1n 0 a . . . a2n ... ... . . . ... 0 0 . . . a  ∣∣∣∣∣∣∣∣∣ a ∈ I, aij ∈ Iij  is an ideal of Rn(R). Proof. It is straightforward. In Proposition 2.4 and Theorem 2.4, I and J are ideals that mentioned in Lemma 2.2. Proposition 2.4. Let Ai =  ai ai1 . . . ain−1 0 ai . . . ain−2 ... ... . . . ... 0 0 . . . ai  , Bj =  bj bj1 . . . bjn−1 0 bj . . . bjn−2 ... ... . . . ... 0 0 . . . bj  ∈ Rn(R) such that (ai0α i(bj0)) k ∈ I for any i, j and some integer k. Then (Aiα i(Bj)) nk ∈ J. Proof. We proceed by induction on n. Let n = 2. For a positive integer k, (Aiα i(Bj)) k = ( (aiαi(bj))k c 0 (aiαi(bj))k ) and that (Aiα i(Bj)) 2k = ( (aiαi(bj))2k (aiαi(bj))kc+ c(aiαi(bj))k 0 (aiαi(bj))2k ) . Hence (Aiα i(Bj)) ∈ J, since ( aiαi(bj) )2k , (aiαi(bj))kc+ c(aiαi(bj))k ∈ I. Now, let Ai =  ai ai1 . . . ain−1 0 ai . . . ain−2 ... ... . . . ... 0 0 . . . ai  ∈ Rn(R) ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3 412 H. A. TAVALLAEE, M. J. NIKMEHR, M. PAZOKI and Bj =  bj bj1 . . . bjn−1 0 bj . . . bjn−2 ... ... . . . ... 0 0 . . . bj  ∈ Rn(R) such that (aiαi(bj))k ∈ I for some integer k. Consider (Aiα i(Bj)) k =  (aiαi(bj))k c1 . . . cn−1 0 (aiαi(bj))k . . . cn−2 ... ... . . . ... 0 0 . . . (aiαi(bj))k  ∈ J and (Aiα i(Bj)) (n−1)k =  (aiαi(bj))(n−1)k b1 . . . dn−1 0 (aiαi(bj))(n−1)k . . . dn−2 ... ... . . . ... 0 0 . . . (aiαi(bj))(n−1)k  ∈ J, by the induction hypothesis all d,is, except dn−1, are in I. Let x = (aiαi(bj))kdn−1 + c1dn−2 + . . . . . .+ cn−1(a iαi(bj))(n−1)k. Hence (Aiα i(Bj)) nk =  (aiαi(bj))nk y1 . . . x 0 (aiαi(bj))nk . . . yn−2 ... ... . . . ... 0 0 . . . (aiαi(bj))nk  ∈ J, since (aiαi(bj))nk, x all y,is are in I. Proposition 2.4 is proved. Theorem 2.4. I is a weak α-skew Armendariz ideal if and only if J is a weak α-skew Armen- dariz ideal. Proof. (⇒) Let f(y) = A0 + A1y + . . . + Amy m, g(y) = B0 + B1y + . . . + Bty t ∈ Rn(R), such that f(y)g(y) ∈ J [y]. Let Ai =  ai0 ai1 . . . ain−1 0 ai0 . . . ain−2 ... ... . . . ... 0 0 . . . ai0  , Bj =  bj0 bj1 . . . bjn−1 0 bj0 . . . bjn−2 ... ... . . . ... 0 0 . . . bj0  ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3 WEAK α-SKEW ARMENDARIZ IDEAL 413 for i = 0, 1, . . . ,m, j = 0, 1, . . . , t. Let f0 = a00 +a10y+ . . .+am0 y m and g0 = b00 + b10y+ . . .+ bt0y t. Then f0g0 ∈ I[y]. Since I is weak α-skew Armendariz, there exists k > 0, such that (ai0α ibj0) k ∈ I for each i, j. Then (Aiα i(Bj)) nk ∈ J for all i, j, by Proposition 2.4. Therefore J is weak α-skew Armendariz. (⇐) Clear. Theorem 2.4 is proved. Corollary 2.2. A ring R is weak α-skew Armendariz if and only if for any positive integer n, Rn(R) is weak α-skew Armendariz. Proof. It follows from Theorem 2.4. Now, we prove the Theorem 2.4 for α : Mn(R) −→Mn(R). Theorem 2.5. I is a weak α-skew Armendariz ideal if and only if J is a weak α-skew Armen- dariz ideal. Proof. (⇒) Let f(y) = A0 + A1y + . . . + Apy p, g(y) = B0 + B1y + . . . + Bqy q ∈ Rn(R) satisfying f(y)g(y) ∈ J [y], where Ai =  ai ai12 ai1n . . . ai1n 0 ai ai23 . . . ai2n 0 0 ai . . . ai3n ... ... ... . . . ... 0 0 0 . . . ai  and Bj =  bi bi12 bi13 . . . bi1n 0 bi bi23 . . . bi2n 0 0 bi . . . bi3n ... ... ... . . . ... 0 0 0 . . . bi  for i = 0, 1, . . . , p, j = 0, 1, . . . , q. Let f0 = a00+a10y+. . .+ap0y p and g0 = b00+b10y+. . .+bq0y q. Then f0g0 ∈ I[y]. Since I is weak α- skew Armendariz, there exists k > 0, such that (aiαi(bj))k ∈ I for each i, j. Then (Aiα i(Bj)) nk ∈ J for all i, j, by Proposition 2.4, and α(aij) = (α(aij)). Therefore J is a weak α-skew Armendariz ideal. (⇐) Clear. Theorem 2.5 is proved. Theorem 2.6. Let R be a ring and I, J be ideals of R. If I ⊆ √ J and I + J I is weak α-skew Armendariz, then J is a weak α-skew Armendariz ideal. Proof. Let f(x) = Σm i=0aix i, g(x) = Σt j=0bjx j ∈ R[x] such that f(x)g(x) ∈ J [x]. Then ( Σm i=0aix i )( Σt j=0bjx j ) ∈ I + J I [x]. Thus ( aiα ibj )nij ∈ I + J I for some positive integer nij . Hence (aiα ibj) nij ∈ I + J, and so( aiα ibj )nij ∈ J, since I ⊆ √ J. Therefore J is weak α-skew Armendariz. Theorem 2.6 is proved. The following is an immediate corollary of Theorem 2.6. Corollary 2.3. Let R be a ring and I an ideal of R such that R I is weak α-skew Armendariz. If I ⊆ nil(R), then R is weak α-skew Armendariz. ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3 414 H. A. TAVALLAEE, M. J. NIKMEHR, M. PAZOKI Lemma 2.3. Let Irt be ideals of R such that Irt⊆ Irs for 1 ≤ r ≤ t ≤ s ≤ n, and Ipq ⊆ Ilq for q = 2, . . . , n, 1 ≤ l ≤ p ≤ n. Then J =   a11 a12 . . . a1n 0 a22 . . . a2n ... ... . . . ... 0 0 . . . ann  ∣∣∣∣∣∣∣∣∣∣∣∣ art ∈ Irt, 1 ≤ r, t ≤ n  is an ideal of Tn(R). Proof. It is straightforward. In Corollaries 2.4 and 2.5 I ,rts are ideals that mentioned in Lemma 2.3. By a similar argument as used in the proof of Proposition 2.1 and Theorem 2.1, one can prove Corollaries 2.4 and 2.5. Corollary 2.4. Let Ai =  ai11 ai12 . . . ai1n 0 ai22 . . . ai2n ... ... . . . ... 0 0 . . . ainn , Bj =  bj11 bj12 . . . bj1n 0 bj22 . . . bj2n ... ... . . . ... 0 0 . . . bjnn  ∈ Tn(R) such that (airrα i(bjrr))k ∈ Irr for some positive integer k and r = 1, . . . , n. Then( (Aiα i(Bj)) 2k+1 )n−1 ∈ J. Corollary 2.5. J is a weak α-skew Armendariz ideal if and only if all Irr are weak α-skew Armendariz ideal for r = 1, . . . , n. 1. Anderson D. D., Camillo V. Armendariz rings and Gaussian rings // Communs Algebra. – 1998. – 26, № 7. – P. 2265 – 2272. 2. Armendariz E. P. A note on extensions of Bear and P. P.-rings // J. Austral. Math. Soc. – 1974. – 18. – P. 470 – 473. 3. Hong C. Y., Kim N. K., Kwak T. K. On skew Armendariz rings // Communs Algebra. – 2003. – 31, № 1. – P. 103 – 122. 4. Huh C., Kim H. K., Lee Y. P.P.-rings and generalized P.P.-rings // J. Pure and Appl. Algebra. – 2002. – 167, № 1. – P. 37 – 52. 5. Huh C., Lee Y., Smoktunowicz A. Armendariz rings and semicommutative rings // J. Communs Algebra. – 2002. – 30, № 2. – P. 751 – 761. 6. Kim N. K., Lee Y. Armendariz rings and reduced rings // J. Algebra. – 2000. – 223, № 2. – P. 477 – 488. 7. Lee T. K., Wong T. L. On Armendariz rings // Houston J. Math. – 2003. – 29, № 3. – P. 583 – 593. 8. Liang L., Wang L., Liu Z. On a generalization of semicommutative rings // Taiwan. J. Math. – 2007. – 11, № 5. – P. 1359 – 1368. 9. Liu Z., Zhao R. On weak Armendariz rings // Communs Algebra. – 2006. – 34, № 7. – P. 2607 – 2616. 10. Mason G. Reflexive ideals // Communs Algebra. – 1981. – 9, № 17. – P. 1709 – 1724. 11. Rege M. B., Chhawchharia S. Armendariz rings // Proc. Jap. Acad. Ser. A. Math. Sci. – 1997. – 73, № 1. – P. 14 – 17. Received 18.10.11 ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3