Quasi-unit regularity and QB-rings

Some relations for quasiunit regular rings and QB-rings, as well as for pseudounit regular rings and QB ∞-rings, are obtained. In the first part of the paper, we prove that (an exchange ring R is a QB-ring) ⟺ (whenever x ∈ R is regular, there exists a quasiunit regular element w ∈ R such that x = xy...

Full description

Saved in:
Bibliographic Details
Date:2012
Main Authors: Jianghua Li, Xiaoqing Sun, Xiaoqin Shen, Shangping Wang
Format: Article
Language:English
Published: Інститут математики НАН України 2012
Series:Український математичний журнал
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/164158
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Quasi-unit regularity and QB-rings/ Jianghua Li, Xiaoqing Sun, Xiaoqin Shen, Shangping Wang // Український математичний журнал. — 2012. — Т. 64, № 3. — С. 415-425. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-164158
record_format dspace
fulltext
spelling nasplib_isofts_kiev_ua-123456789-1641582025-02-09T12:05:30Z Quasi-unit regularity and QB-rings Квазiодинична регулярнiсть та QB-кiльця Jianghua Li Xiaoqing Sun Xiaoqin Shen Shangping Wang Статті Some relations for quasiunit regular rings and QB-rings, as well as for pseudounit regular rings and QB ∞-rings, are obtained. In the first part of the paper, we prove that (an exchange ring R is a QB-ring) ⟺ (whenever x ∈ R is regular, there exists a quasiunit regular element w ∈ R such that x = xyx = xyw for some y ∈ R) ⟺ (whenever aR + bR = dR in R; there exists a quasiunit regular element w ∈ R such that a + bz = dw for some z ∈ R). Similarly, we also give necessary and sufficient conditions for QB ∞-rings in the second part of the paper. Отримано деякi спiввiдношення для квазiодиничних регулярних кiлець та QB-кiлець, а також для псевдоодиничних регулярних кiлець та QB∞-кiлець. У першiй частинi статтi доведено, що (кiльце R з властивiстю замiни є QB-кiльцем) ⇔ (якщо x∈R є регулярним, то iснує квазiодиничний регулярний елемент w∈R такий, що x=xyx=xyw для деякого y∈R) ⇔ (якщо aR+bR=dR in R в R, то iснує квазiодиничний регулярний елемент w∈R такий, що a+bz=dw для деякого z∈R). Аналогiчним чином отриманi необхiднi та достатнi умови для QB∞-кiлець наведено у другiй частинi статтi. This paper is supported by National Nature Science Foundation of China (NSFC 61173192, 11101330) and Natural Science Foundation of Shaanxi Province (2011JQ1007) and Education Office Foundation of Shaanxi Province (2010JK728) and The Starting Research Fund from Xi’an University of Technology (108-211105). 2012 Article Quasi-unit regularity and QB-rings/ Jianghua Li, Xiaoqing Sun, Xiaoqin Shen, Shangping Wang // Український математичний журнал. — 2012. — Т. 64, № 3. — С. 415-425. — Бібліогр.: 9 назв. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/164158 512.5 en Український математичний журнал application/pdf Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Jianghua Li
Xiaoqing Sun
Xiaoqin Shen
Shangping Wang
Quasi-unit regularity and QB-rings
Український математичний журнал
description Some relations for quasiunit regular rings and QB-rings, as well as for pseudounit regular rings and QB ∞-rings, are obtained. In the first part of the paper, we prove that (an exchange ring R is a QB-ring) ⟺ (whenever x ∈ R is regular, there exists a quasiunit regular element w ∈ R such that x = xyx = xyw for some y ∈ R) ⟺ (whenever aR + bR = dR in R; there exists a quasiunit regular element w ∈ R such that a + bz = dw for some z ∈ R). Similarly, we also give necessary and sufficient conditions for QB ∞-rings in the second part of the paper.
format Article
author Jianghua Li
Xiaoqing Sun
Xiaoqin Shen
Shangping Wang
author_facet Jianghua Li
Xiaoqing Sun
Xiaoqin Shen
Shangping Wang
author_sort Jianghua Li
title Quasi-unit regularity and QB-rings
title_short Quasi-unit regularity and QB-rings
title_full Quasi-unit regularity and QB-rings
title_fullStr Quasi-unit regularity and QB-rings
title_full_unstemmed Quasi-unit regularity and QB-rings
title_sort quasi-unit regularity and qb-rings
publisher Інститут математики НАН України
publishDate 2012
topic_facet Статті
url https://nasplib.isofts.kiev.ua/handle/123456789/164158
citation_txt Quasi-unit regularity and QB-rings/ Jianghua Li, Xiaoqing Sun, Xiaoqin Shen, Shangping Wang // Український математичний журнал. — 2012. — Т. 64, № 3. — С. 415-425. — Бібліогр.: 9 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT jianghuali quasiunitregularityandqbrings
AT xiaoqingsun quasiunitregularityandqbrings
AT xiaoqinshen quasiunitregularityandqbrings
AT shangpingwang quasiunitregularityandqbrings
AT jianghuali kvaziodiničnaregulârnistʹtaqbkilʹcâ
AT xiaoqingsun kvaziodiničnaregulârnistʹtaqbkilʹcâ
AT xiaoqinshen kvaziodiničnaregulârnistʹtaqbkilʹcâ
AT shangpingwang kvaziodiničnaregulârnistʹtaqbkilʹcâ
first_indexed 2025-11-25T22:57:34Z
last_indexed 2025-11-25T22:57:34Z
_version_ 1849804932349165568