A companion of Dragomir’s generalization of the Ostrowski inequality and applications to numerical integration

Some analogs of Dragomir’s generalization of the Ostrowski integral inequality are established. Some sharp inequalities are proved. An application to the composite quadrature rule is provided. Встановлено аналоги узагальнення Драгомiра iнтегральної нерiвностi Островського, отримано деякi точнi нерiв...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:2012
Автор: Alomari, M.W.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/164167
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A companion of Dragomir’s generalization of the Ostrowski inequality and applications to numerical integration / M.W.Alomari // Український математичний журнал. — 2012. — Т. 64, № 4. — С. 435-450. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-164167
record_format dspace
spelling Alomari, M.W.
2020-02-08T18:24:11Z
2020-02-08T18:24:11Z
2012
A companion of Dragomir’s generalization of the Ostrowski inequality and applications to numerical integration / M.W.Alomari // Український математичний журнал. — 2012. — Т. 64, № 4. — С. 435-450. — Бібліогр.: 20 назв. — англ.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/164167
517.5
Some analogs of Dragomir’s generalization of the Ostrowski integral inequality are established. Some sharp inequalities are proved. An application to the composite quadrature rule is provided.
Встановлено аналоги узагальнення Драгомiра iнтегральної нерiвностi Островського, отримано деякi точнi нерiвностi. Наведено застосування до складеної квадратурної формули.
en
Інститут математики НАН України
Український математичний журнал
Статті
A companion of Dragomir’s generalization of the Ostrowski inequality and applications to numerical integration
Аналог узагальнення Драгомiра нерiвностi Островського та застосування до чисельного iнтегрування
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A companion of Dragomir’s generalization of the Ostrowski inequality and applications to numerical integration
spellingShingle A companion of Dragomir’s generalization of the Ostrowski inequality and applications to numerical integration
Alomari, M.W.
Статті
title_short A companion of Dragomir’s generalization of the Ostrowski inequality and applications to numerical integration
title_full A companion of Dragomir’s generalization of the Ostrowski inequality and applications to numerical integration
title_fullStr A companion of Dragomir’s generalization of the Ostrowski inequality and applications to numerical integration
title_full_unstemmed A companion of Dragomir’s generalization of the Ostrowski inequality and applications to numerical integration
title_sort companion of dragomir’s generalization of the ostrowski inequality and applications to numerical integration
author Alomari, M.W.
author_facet Alomari, M.W.
topic Статті
topic_facet Статті
publishDate 2012
language English
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Аналог узагальнення Драгомiра нерiвностi Островського та застосування до чисельного iнтегрування
description Some analogs of Dragomir’s generalization of the Ostrowski integral inequality are established. Some sharp inequalities are proved. An application to the composite quadrature rule is provided. Встановлено аналоги узагальнення Драгомiра iнтегральної нерiвностi Островського, отримано деякi точнi нерiвностi. Наведено застосування до складеної квадратурної формули.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/164167
citation_txt A companion of Dragomir’s generalization of the Ostrowski inequality and applications to numerical integration / M.W.Alomari // Український математичний журнал. — 2012. — Т. 64, № 4. — С. 435-450. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT alomarimw acompanionofdragomirsgeneralizationoftheostrowskiinequalityandapplicationstonumericalintegration
AT alomarimw analoguzagalʹnennâdragomiranerivnostiostrovsʹkogotazastosuvannâdočiselʹnogointegruvannâ
AT alomarimw companionofdragomirsgeneralizationoftheostrowskiinequalityandapplicationstonumericalintegration
first_indexed 2025-11-25T16:15:08Z
last_indexed 2025-11-25T16:15:08Z
_version_ 1850517751725031424
fulltext UDC 517.5 M. W. Alomari (Jerash Univ., Jordan) A COMPANION OF DRAGOMIR’S GENERALIZATION OF OSTROWSKI’S INEQUALITY AND APPLICATIONS IN NUMERICAL INTEGRATION АНАЛОГ УЗАГАЛЬНЕННЯ ДРАГОМIРА НЕРIВНОСТI ОСТРОВСЬКОГО ТА ЗАСТОСУВАННЯ ДО ЧИСЕЛЬНОГО IНТЕГРУВАННЯ Some analogs of Dragomir’s generalization of the Ostrowski integral inequality∣∣∣∣∣∣(b− a) [ λ f (a) + f (b) 2 + (1− λ) f (x) ] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ [ (b− a)2 4 ( λ2 + (1− λ)2 ) + ( x− a+ b 2 )2 ]∥∥f ′∥∥ ∞ are established. Some sharp inequalities are proved. An application to a composite quadrature rule is provided. Встановлено аналоги узагальнення Драгомiра iнтегральної нерiвностi Островського∣∣∣∣∣∣(b− a) [ λ f (a) + f (b) 2 + (1− λ) f (x) ] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ [ (b− a)2 4 ( λ2 + (1− λ)2 ) + ( x− a+ b 2 )2 ]∥∥f ′∥∥ ∞ . Отримано деякi точнi нерiвностi. Наведено застосування до складеної квадратурної формули. 1. Introduction. In 1938, Ostrowski established a very interesting inequality for differentiable mappings with bounded derivatives, as follows: Theorem 1. Let f : I ⊂ R→ R be a differentiable mapping on I◦, the interior of the interval I, such that f ′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′ (x)| ≤M. Then the following inequality: ∣∣∣∣∣∣f (x)− 1 b− a b∫ a f (u) du ∣∣∣∣∣∣ ≤M (b− a) 14 + ( x− a+ b 2 )2 (b− a)2  (1.1) holds for all x ∈ [a, b]. The constant 1 4 is the best possible in the sense that it cannot be replaced by a smaller constant. In [16], Dragomir, Cerone and Roumeliotis proved the following generalization of Ostrowski’s inequality. Theorem 2. Let f : [a, b] → R be a continuous on [a, b], differentiable on (a, b) and whose derivative f ′ is bounded on (a, b). Denote ‖f ′‖∞ := supt∈[a,b] |f ′(t)| <∞. Then c© M. W. ALOMARI, 2012 ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 4 435 436 M. W. ALOMARI∣∣∣∣∣∣(b− a) [ λ f (a) + f (b) 2 + (1− λ) f (x) ] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ [ (b− a)2 4 ( λ2 + (1− λ)2 ) + ( x− a+ b 2 )2 ]∥∥f ′∥∥∞ (1.2) for all λ ∈ [0, 1] and a+ λ b− a 2 ≤ x ≤ b− λb− a 2 . Using (1.2), the authors obtained estimates for the remainder term of the midpoint, trapezoid, and Simpson formulae. They also gave applications of the mentioned results in numerical integration and for special means. For recent results, generalizations and new inequalities of Hermite – Hadamard, Ostrowski and Simpson’s type the reader may be refer to [1 – 20] and the references therein. Motivated by [12], Dragomir in [14] has proved the following companion of the Ostrowski inequality: Theorem 3. Let f : [a, b] → R be an absolutely continuous function on [a, b]. Then we have the inequalities ∣∣∣∣∣∣f (x) + f (a+ b− x) 2 − 1 b− a b∫ a f (t) dt ∣∣∣∣∣∣ ≤ ≤  18 + 2 x− 3a+ b 4 b− a  2  (b− a) ‖f ′‖∞ , f ′ ∈ L∞ [a, b] , 21/q (q + 1)1/q (x− ab− a )q+1 +  a+ b 2 − x b− a  q+1  1/q (b− a)1/q ‖f ′‖[a,b],p , p > 1, 1 p + 1 q = 1, and f ′ ∈ Lp [a, b] ,1 4 + ∣∣∣∣∣∣∣ x− 3a+ b 4 b− a ∣∣∣∣∣∣∣  ‖f ′‖[a,b],1 (1.3) for all x ∈ [ a, a+ b 2 ] . In [15], Dragomir established some inequalities for this companion for mappings of bounded variation. Theorem 4. Let f : [a, b]→ R be a mapping of bounded variation on [a, b]. Then we have the inequalities ∣∣∣∣∣∣f (x) + f (a+ b− x) 2 − 1 b− a b∫ a f (t) dt ∣∣∣∣∣∣ ≤ 1 4 + ∣∣∣∣∣∣∣ x− 3a+ b 4 b− a ∣∣∣∣∣∣∣  · b∨ a (f) (1.4) ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 4 A COMPANION OF DRAGOMIR’S GENERALIZATION OF OSTROWSKI’S INEQUALITY . . . 437 for any x ∈ [ a, a+ b 2 ] , where ∨b a(f) denotes the total variation of f on [a, b]. The constant 1/4 is best possible. In [19], Liu introduced some companions of an Ostrowski type inequality for functions whose first derivative are absolutely continuous. In [9], Barnett, Dragomir and Gomma have proved some companions for the Ostrowski inequality and the generalized trapezoid inequality. Recently, Alomari [2] proved a companion inequality for differentiable mappings whose first derivatives are bounded. In this paper, we prove a companion of Dragomir’s generalization of Ostrowski’s inequality (1.2). Namely, inequalities for mappings of bounded variation and for absolutely continuous mappings whose first derivatives are belong to L∞[a, b] and to Lp[a, b] are established. 2. The case when f is of bounded variation. Theorem 5. Let f : [a, b] → R be a mapping of bounded variation on [a, b]. Then for all λ ∈ [0, 1] and a+ λ b− a 2 ≤ x ≤ a+ b 2 , we have the inequality∣∣∣∣∣∣(b− a) [ λ f (a) + f (b) 2 + (1− λ) f (x) + f (a+ b− x) 2 ] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤  max { λ b− a 2 , ( x− (2− λ) a+ λb 2 ) , ( a+ b 2 − x )} · ∨b a (f) , b− a 2 max {∨x a (f) , ∨a+b−x x (f) , ∨b a+b−x (f) } , (2.1) where ∨b a (f) denotes to the total variation of f over [a, b]. The constant 1 2 in the second inequality is the best possible in the sense that it cannot be replaced by a smaller one. Proof. Using the integration by parts formula for Riemann – Stieltjes integral, we have x∫ a ( t− ( a+ λ b− a 2 )) df (t) = ( x− a− λb− a 2 ) f (x) + λ b− a 2 f (a)− x∫ a f(t)dt, a+b−x∫ x ( t− a+ b 2 ) df (t) = ( a+ b 2 − x ) (f (x) + f (a+ b− x))− a+b−x∫ x f(t)dt, and b∫ a+b−x ( t− ( b− λb− a 2 )) df (t) = = λ b− a 2 f (b) + ( x− a− λb− a 2 ) f (a+ b− x)− b∫ a+b−x f(t)dt. Adding the above equalities, we get ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 4 438 M. W. ALOMARI b∫ a K (x, t) f ′(t)dt = (b− a) [ λ f (a) + f (b) 2 + (1− λ) f (x) + f (a+ b− x) 2 ] − b∫ a f(t)dt, where K (x, t) =  t− ( a+ λ b− a 2 ) , t ∈ [a, x] , t− a+ b 2 , t ∈ (x, a+ b− x] , t− ( b− λb− a 2 ) , t ∈ (a+ b− x, b] , for all λ ∈ [0, 1] and a+ λ b− a 2 ≤ x ≤ a+ b 2 . Now, we use the fact that for a continuous function p : [c, d] → R and a function ν : [c, d] → R of bounded variation, one has the inequality∣∣∣∣∣∣ d∫ c p(t)dν (t) ∣∣∣∣∣∣ ≤ sup t∈[c,d] |p(t)| b∨ a (ν) . (2.2) Applying the inequality (2.2) for p(t) = K (x, t) , as above and ν(t) = f(t), t ∈ [a, b], we get∣∣∣∣∣∣ b∫ a K (x, t) df(t) ∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣ x∫ a K (x, t) df (t) ∣∣∣∣∣∣+ ∣∣∣∣∣∣ a+b−x∫ x K (x, t) df(t) ∣∣∣∣∣∣+ ∣∣∣∣∣∣ b∫ a+b−x K (x, t) df(t) ∣∣∣∣∣∣ ≤ ≤ sup t∈[a,x] |K (x, t)| · x∨ a (f) + sup t∈[x,a+b−x] |K (x, t)| · a+b−x∨ x (f)+ + sup t∈[a+b−x,b] |K (x, t)| · b∨ a+b−x (f) = = max { λ b− a 2 , ( x− (2− λ) a+ λb 2 )} · x∨ a (f) + ( a+ b 2 − x ) · a+b−x∨ x (f)+ +max { λ b− a 2 , ( x− (2− λ) a+ λb 2 )} · b∨ a+b−x (f) :=M(x). Now, observe that M(x) ≤ max { λ b− a 2 , ( x− (2− λ) a+ λb 2 ) , ( a+ b 2 − x )} × × [ x∨ a (f) + a+b−x∨ x (f) + b∨ a+b−x (f) ] = ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 4 A COMPANION OF DRAGOMIR’S GENERALIZATION OF OSTROWSKI’S INEQUALITY . . . 439 = max { λ b− a 2 , ( x− (2− λ) a+ λb 2 ) , ( a+ b 2 − x )} · b∨ a (f) , which proves the first inequality in (2.1). Also, M(x) ≤ max { x∨ a (f) , a+b−x∨ x (f) , b∨ a+b−x (f) } × × [ λ b− a 2 + ( x− a− λb− a 2 ) + ( a+ b 2 − x )] = = b− a 2 max { x∨ a (f) , a+b−x∨ x (f) , b∨ a+b−x (f) } for all λ ∈ [0, 1] and a+ λ b− a 2 ≤ x ≤ a+ b 2 , thus the second inequality in (2.1) is proved. To prove that the constant 1 2 in the second inequality is sharp, assume that the second inequality holds with constant C > 0, i.e.,∣∣∣∣∣∣(b− a) [ λ f (a) + f (b) 2 + (1− λ) f (x) + f (a+ b− x) 2 ] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ C (b− a) ·max { x∨ a (f) , a+b−x∨ x (f) , b∨ a+b−x (f) } (2.3) for all λ ∈ [0, 1] and a+ λ b− a 2 ≤ x ≤ a+ b 2 . Consider the mapping f(t) = 0, t ∈ (a, b), 1, t = a, b, then for x = a and λ = 0, we have ∫ b a f(t)dt = 0, ∨b a (f) = 2, making of use (2.3), we get (b− a) ≤ 2C (b− a) , which gives 1 2 ≤ C and thus 1 2 is the best possible, which completes the proof. Remark 1. In Theorem 5, choose λ = 0, then we get∣∣∣∣∣∣(b− a) f (x) + f (a+ b− x) 2 − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ (x− a) · x∨ a (f) + ( a+ b 2 − x ) · a+b−x∨ x (f) + (x− a) · b∨ a+b−x (f) ≤ ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 4 440 M. W. ALOMARI ≤ max { (x− a) , ( a+ b 2 − x )} · b∨ a (f) = [ 1 4 (b− a) + ∣∣∣∣x− 3a+ b 4 ∣∣∣∣] · b∨ a (f) , which gives (1.4). Corollary 1. Let f as in Theorem 5, then we have∣∣∣∣∣∣(b− a) [ λ f (a) + f (b) 2 + (1− λ) f ( a+ b 2 )] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ b− a 2 [ 1 2 + ∣∣∣∣λ− 1 2 ∣∣∣∣] · b∨ a (f) (2.4) for all λ ∈ [0, 1]. The ‘first’ constant 1 2 is the best possible in the sense that it cannot be replaced by a smaller one. Proof. In Theorem 5, choose x = a+ b 2 , we get∣∣∣∣∣∣(b− a) [ λ f (a) + f (b) 2 + (1− λ) f ( a+ b 2 )] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ max { λ b− a 2 , (1− λ) b− a 2 } · b∨ a (f) = = [ b− a 2 ·max {λ, (1− λ)} ] · b∨ a (f) = 1 2 [ 1 2 + ∣∣∣∣λ− 1 2 ∣∣∣∣] (b− a) · b∨ a (f) which proves the inequality (2.4). To prove that the constant 1 2 is sharp, assume that the inequal- ity (2.4) holds with constant C > 0, i.e.,∣∣∣∣∣∣(b− a) [ λ f (a) + f (b) 2 + (1− λ) f ( a+ b 2 )] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ C [ 1 2 + ∣∣∣∣λ− 1 2 ∣∣∣∣] (b− a) · b∨ a (f) (2.5) for all λ ∈ [0, 1]. Consider the mapping f(t) =  0, t ∈ [a, b]\ { a+ b 2 } , 1, t = a+ b 2 , then we have ∫ b a f(t)dt = 0, ∨b a (f) = 2, and choose λ = 0, making of use (2.5), we get ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 4 A COMPANION OF DRAGOMIR’S GENERALIZATION OF OSTROWSKI’S INEQUALITY . . . 441 b− a ≤ 2C (b− a) , which gives 1 2 ≤ C and thus 1 2 is the best possible, which completes the proof. Corollary 2. In Corollary 1, if we choose (1) λ = 0, then we get ∣∣∣∣∣∣(b− a) f ( a+ b 2 ) − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ 1 2 (b− a) · b∨ a (f) , (2) λ = 1 3 , then we get ∣∣∣∣∣∣b− a6 [ f (a) + 4f ( a+ b 2 ) + f (b) ] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ 1 3 (b− a) · b∨ a (f) , (3) λ = 1 2 , then we get ∣∣∣∣∣∣b− a2 [ f (a) + f (b) 2 + f ( a+ b 2 )] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ 1 4 (b− a) · b∨ a (f) , (4) λ = 1, then we get ∣∣∣∣∣∣(b− a) f (a) + f (b) 2 − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ 1 2 (b− a) · b∨ a (f) . The constants 1 2 , 1 3 , 1 4 and 1 2 are the best possible. Corollary 3. In (2.1), choose λ = 1 4 and x = 2a+ b 3 , then we get the following 3/8-Simpson’s inequality: ∣∣∣∣∣∣b− a8 [ f (a) + 3f ( 2a+ b 3 ) + 3f ( a+ 2b 3 ) + f (b) ] − b∫ a f (t) dt ∣∣∣∣∣∣ ≤ ≤  5b− a 24 · ∨b a (f) , b− a 2 ·max {∨ 2a+b 3 a (f) , ∨a+2b 3 2a+b 3 (f) , ∨b a+2b 3 (f) } . (2.6) ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 4 442 M. W. ALOMARI 3. The case when f ′ ∈ L∞[a, b]. Theorem 6. Let f : I ⊂ R→ R be an absolutely continuous mapping on I◦, the interior of the interval I, where a, b ∈ I with a < b. If f ′ is bounded on [a, b], i.e., ‖f ′‖∞ := supt∈[a,b] |f ′(t)| <∞. Then the inequality∣∣∣∣∣∣(b− a) [ λ f (a) + f (b) 2 + (1− λ) f (x) + f (a+ b− x) 2 ] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ [ (b− a)2 8 ( 2λ2 + (1− λ)2 ) + 2 ( x− (3− λ) a+ (1 + λ) b 4 )2 ]∥∥f ′∥∥∞ (3.1) holds, for all λ ∈ [0, 1] and a+ λ b− a 2 ≤ x ≤ a+ b 2 . Proof. Defining the mapping K (x, t) =  t− ( a+ λ b− a 2 ) , t ∈ [a, x] , t− a+ b 2 , t ∈ (x, a+ b− x] , t− ( b− λb− a 2 ) , t ∈ (a+ b− x, b] , (3.2) for all λ ∈ [0, 1] and a+ λ b− a 2 ≤ x ≤ a+ b 2 . Integrating by parts, we obtain b∫ a K (x, t) f ′(t)dt = (b− a) [ λ f (a) + f (b) 2 + (1− λ) f (x) + f (a+ b− x) 2 ] − b∫ a f(t)dt. Since, f ′ is bounded, we can state that∣∣∣∣∣∣(b− a) [ λ f (a) + f (b) 2 + (1− λ) f (x) + f (a+ b− x) 2 ] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ b∫ a |K (x, t)| ∣∣f ′(t)∣∣ dt ≤ ∥∥f ′∥∥∞ b∫ a |K (x, t)| dt. Now, since r∫ p |t− q| dt = q∫ p (q − t) dt+ r∫ q (t− q) dt = (q − p)2 + (r − q)2 2 = = 1 4 (p− r)2 + ( q − r + p 2 )2 (3.3) ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 4 A COMPANION OF DRAGOMIR’S GENERALIZATION OF OSTROWSKI’S INEQUALITY . . . 443 for all r, p, q such that p ≤ q ≤ r. Then, we observe that x∫ a ∣∣∣∣t− (a+ λ b− a 2 )∣∣∣∣ dt = 1 4 (x− a)2 + ( λ b− a 2 − x− a 2 )2 , a+b−x∫ x ∣∣∣∣t− a+ b 2 ∣∣∣∣ dt = (x− a+ b 2 )2 , and b∫ a+b−x ∣∣∣∣t− (b− λb− a2 )∣∣∣∣ dt = 1 4 (x− a)2 + ( x− a 2 − λb− a 2 )2 . Then, we have b∫ a |K (x, t)| dt = (x− a)2 + ((x− a)− λ (b− a))2 2 + ( x− a+ b 2 )2 = = 1 4 λ2 (b− a)2 + ( x− (2− λ) a+ λb 2 )2 ︸ ︷︷ ︸ by (3.3) + ( x− a+ b 2 )2 = = λ2 4 (b− a)2 + (1− λ)2 8 (b− a)2 + 2 ( x− (3− λ) a+ (1 + λ) b 4 )2 ︸ ︷︷ ︸ by (3.3) = = (b− a)2 8 ( 2λ2 + (1− λ)2 ) + 2 ( x− (3− λ) a+ (1 + λ) b 4 )2 , which gives that∣∣∣∣∣∣(b− a) [ λ f (a) + f (b) 2 + (1− λ) f (x) + f (a+ b− x) 2 ] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ [ (b− a)2 8 ( 2λ2 + (1− λ)2 ) + 2 ( x− (3− λ) a+ (1 + λ) b 4 )2 ]∥∥f ′∥∥∞ for all λ ∈ [0, 1] and a+ λ b− a 2 ≤ x ≤ a+ b 2 , which gives the required result. Remark 2. In (3.1), choose λ = 0, then we have∣∣∣∣∣∣(b− a) f (x) + f (a+ b− x) 2 − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 4 444 M. W. ALOMARI ≤ [ (b− a)2 8 + 2 ( x− 3a+ b 4 )2]∥∥f ′∥∥∞ , which is equivalent to the first inequality in (1.3), and if we choose x = 3a+ b 4 , then we have∣∣∣∣∣∣b− a2 [ f ( 3a+ b 4 ) + f ( a+ 3b 4 )] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ (b− a)2 8 ∥∥f ′∥∥∞ . Corollary 4. Let f as in Theorem 6, then we get∣∣∣∣∣∣(b− a) [ λ f (a) + f (b) 2 + (1− λ) f ( a+ b 2 )] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ ( λ2 + (1− λ)2 ) (b− a)2 4 ∥∥f ′∥∥∞ . (3.4) The constant 1 4 is the best possible in the sense that it cannot be replaced by a smaller one. Proof. In the proof of Theorem 6, choose x = a+ b 2 we get the required result. To show that 1/4 is the best possible (3.4). Assume (3.4) holds with constant C > 0, i.e.,∣∣∣∣∣∣(b− a) [ λ f (a) + f (b) 2 + (1− λ) f ( a+ b 2 )] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ C ( λ2 + (1− λ)2 ) (b− a)2 · ∥∥f ′∥∥∞ (3.5) for all λ ∈ [0, 1]. Consider the function f (t) = ∣∣∣∣t− a+ b 2 ∣∣∣∣, t ∈ [a, b], then b∫ a f(t)dt = (b− a)2 4 and ‖f ′‖∞ = 1. Using (3.5) with λ = 1, we get 1 4 ≤ C, which shows that 1/4 is the best possible, which completes the proof. Corollary 5. In Corollary 4, if we choose (1) λ = 0, then we get∣∣∣∣∣∣(b− a) f ( a+ b 2 ) − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ 1 4 (b− a)2 ∥∥f ′∥∥∞ , (2) λ = 1 3 , then we get∣∣∣∣∣∣b− a6 [ f (a) + 4f ( a+ b 2 ) + f (b) ] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ 5 36 (b− a)2 ∥∥f ′∥∥∞ , ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 4 A COMPANION OF DRAGOMIR’S GENERALIZATION OF OSTROWSKI’S INEQUALITY . . . 445 (3) λ = 1 2 , then we get∣∣∣∣∣∣b− a2 [ f (a) + f (b) 2 + f ( a+ b 2 )] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ 1 8 (b− a)2 ∥∥f ′∥∥∞ , (4) λ = 1, then we get∣∣∣∣∣∣(b− a) f (a) + f (b) 2 − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ 1 4 (b− a)2 ∥∥f ′∥∥∞ . The constants 1 4 , 5 36 , 1 8 and 1 4 are the best possible. Corollary 6. In (3.1), choose λ = 1 4 and x = 2a+ b 3 , then we get the following 3/8-Simpson’s inequality ∣∣∣∣∣∣b− a8 [ f (a) + 3f ( 2a+ b 3 ) + 3f ( a+ 2b 3 ) + f (b) ] − b∫ a f (t) dt ∣∣∣∣∣∣ ≤ ≤ 25 288 (b− a)2 · ∥∥f ′∥∥∞ . (3.6) 4. The case when f ′ ∈ Lp[a, b]. Theorem 7. Let f : I ⊂ R→ R be an absolutely continuous mapping on I◦, the interior of the interval I, where a, b ∈ I with a < b. If f ′ is belong to Lp[a, b], p > 1. Then we have the following inequality: ∣∣∣∣∣∣(b− a) [ λ f (a) + f (b) 2 + (1− λ) f (x) + f (a+ b− x) 2 ] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ ( 2 q + 1 )1/q ∥∥f ′∥∥ p [( λ b− a 2 )q+1 + ( a+ b 2 − x )q+1 + ( x− (2− λ) a+ λb 2 )q+1 ]1/q (4.1) for all λ ∈ [0, 1], a+ λ b− a 2 ≤ x ≤ a+ b 2 , and 1 p + 1 q = 1, p > 1. Proof. Using Hölder inequality, we have∣∣∣∣∣∣b− a2 [λ (f (a) + f (b)) + (1− λ) (f (x) + f (a+ b− x))]− b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤  b∫ a |K (x, t)|q dt 1/q b∫ a ∣∣f ′ (t)∣∣p dt 1/p = ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 4 446 M. W. ALOMARI = ∥∥f ′∥∥ p  x∫ a ∣∣∣∣t− (a+ λ b− a 2 )∣∣∣∣q dt+ a+b−x∫ x ∣∣∣∣t− a+ b 2 ∣∣∣∣q dt+ b∫ a+b−x ∣∣∣∣t− (b− λb− a2 )∣∣∣∣q dt  = = ( 2 q + 1 )1/q ∥∥f ′∥∥ p [( λ b− a 2 )q+1 + ( a+ b 2 − x )q+1 + ( x− (2− λ) a+ λb 2 )q+1 ]1/q for all λ ∈ [0, 1], a+ λ b− a 2 ≤ x ≤ a+ b 2 , and 1 p + 1 q = 1, p > 1. Remark 3. In Theorem 7, choose λ = 0, then we have∣∣∣∣∣∣(b− a) f (x) + f (a+ b− x) 2 − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ ( 2 q + 1 )1/q ∥∥f ′∥∥ p [( a+ b 2 − x )q+1 + (x− a)q+1 ]1/q , which is equivalent to the second inequality in (1.3), and if x = 3a+ b 4 , then we have∣∣∣∣∣∣b− a2 [ f ( 3a+ b 4 ) + f ( a+ 3b 4 )] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ (b− a)(q+1)/q 4 (q + 1)1/q ∥∥f ′∥∥ p . Corollary 7. In Theorem (7), choose x = a+ b 2 , we get∣∣∣∣∣∣(b− a) [ λ f (a) + f (b) 2 + (1− λ) f ( a+ b 2 )] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ 1 2 ( λq+1 + (1− λ)q+1 q + 1 )1/q (b− a)(q+1)/q ∥∥f ′∥∥ p . (4.2) The constant 1 2 is the best possible in the sense that it cannot be replaced by a smaller one. Proof. In the proof of Theorem 7, choose x = a+ b 2 we get the required result. To show that 1/2 is the best possible (4.2). Assume (4.2) holds with constant C > 0, i.e.,∣∣∣∣∣∣(b− a) [ λ f (a) + f (b) 2 + (1− λ) f ( a+ b 2 )] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ C ( λq+1 + (1− λ)q+1 q + 1 )1/q (b− a) q+1 q ∥∥f ′∥∥ p (4.3) ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 4 A COMPANION OF DRAGOMIR’S GENERALIZATION OF OSTROWSKI’S INEQUALITY . . . 447 for all λ ∈ [0, 1]. Consider the function f(t) = ∣∣∣∣t− a+ b 2 ∣∣∣∣, t ∈ [a, b], then ∫ b a f(t)dt = (b− a)2 4 and ‖f ′‖p = (b− a)1/p . Using (4.3) with λ = 0, we get (b− a)2 4 ≤ C 1 (q + 1)1/q (b− a)(q+1)/q (b− a)1/p , which gives 1 4 ≤ C (q + 1)1/q for any q > 1. Letting q → 1+, we deduce that C ≥ 1 2 , and the sharpness of the constant in (4.2) is proved, which completes the proof. Corollary 8. In Corollary 7, if we choose (1) λ = 0, then we get∣∣∣∣∣∣(b− a) f ( a+ b 2 ) − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ (b− a)(q+1)/q 2 (q + 1)1/q ∥∥f ′∥∥ p , (2) λ = 1 3 , then we get ∣∣∣∣∣∣b− a6 [ f (a) + 4f ( a+ b 2 ) + f (b) ] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ ≤ 1 6 ( 1 + 2q+1 3 (q + 1) )1/q (b− a)(q+1)/q ∥∥f ′∥∥ p , (3) λ = 1 2 , then we get ∣∣∣∣∣∣b− a2 [ f (a) + f (b) 2 + f ( a+ b 2 )] − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ (b− a)(q+1)/q 4 (q + 1)1/q ∥∥f ′∥∥ p , (4) λ = 1, then we get∣∣∣∣∣∣b− af (a) + f (b) 2 − b∫ a f(t)dt ∣∣∣∣∣∣ ≤ (b− a)(q+1)/q 2 (q + 1)1/q ∥∥f ′∥∥ p . The constants 1 2 (q + 1)1/q , 1 6 ( 1 + 2q+1 3 (q + 1) )1/q , 1 4 (q + 1)1/q and 1 2 (q + 1)1/q are the best pos- sible. ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 4 448 M. W. ALOMARI Corollary 9. In (4.1), choose λ = 1 4 and x = 2a+ b 3 , then we get the following 3/8-Simpson’s inequality: ∣∣∣∣∣∣b− a8 [ f (a) + 3f ( 2a+ b 3 ) + 3f ( a+ 2b 3 ) + f (b) ] − b∫ a f (t) dt ∣∣∣∣∣∣ ≤ ≤ ( 2 q + 1 )1/q [( 1 8 )q+1 + ( 1 6 )q+1 + ( 5 24 )q+1 ]1/q (b− a)(q+1)/q ∥∥f ′∥∥ p . (4.4) 5. A composite quadrature formula. Let In : a = x0 < x1 < . . . < xn = b be a division of the interval [a, b] and hi = xi+1 − xi, i = 0, 1, 2, . . . , n− 1. Consider the general quadrature formula Qn (In, f) := n−1∑ i=0 hi 2 [ λ (f (xi) + f (xi+1)) + (1− λ) (f (αi) + f (xi + xi+1 − αi)) ] (5.1) for all λ ∈ [0, 1] and xi + λ xi+1 − xi 2 ≤ αi ≤ xi + xi+1 2 . The following result holds. Theorem 8. Let f as in Theorem 5, then we have b∫ a f(t)dt = Qn (In, f) +Rn (In, f), where Qn (In, f) is defined by formula (5.1), and the remainder satisfies the estimates |Rn (In, f)| ≤  n−1∑ i=0 max { λ hi 2 , ( αi − (2− λ)xi + λxi+1 2 ) , ( xi + xi+1 2 − αi )} · xi+1∨ xi (f), n−1∑ i=0 hi 2 ·max  αi∨ xi (f) , xi+xi+1−αi∨ αi (f) , xi+1∨ xi+xi+1−αi (f)  for all λ ∈ [0, 1] and xi + λ xi+1 − xi 2 ≤ αi ≤ xi + xi+1 2 . Proof. Applying inequality (2.1) on the intervals [xi, xi+1], we may state that Ri (Ii, f) = xi+1∫ xi f (t) dt− hi 2 [ λ (f (xi) + f (xi+1)) + (1− λ) (f (αi) + f (xi + xi+1 − αi)) ] . Summing the above inequality over i from 0 to n− 1, we get Rn (In, f) = = n−1∑ i=0 xi+1∫ xi f(t)dt− n−1∑ i=0 hi 2 [λ (f (xi) + f (xi+1)) + (1− λ) (f (αi) + f (xi + xi+1 − αi))] = ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 4 A COMPANION OF DRAGOMIR’S GENERALIZATION OF OSTROWSKI’S INEQUALITY . . . 449 = b∫ a f(t)dt− n−1∑ i=0 hi 2 [ λ (f (xi) + f (xi+1)) + (1− λ) (f (αi) + f (xi + xi+1 − αi)) ] , which follows form (2.1), that |Rn (In, f)| = = ∣∣∣∣∣∣ b∫ a f(t)dt− n−1∑ i=0 hi 2 [ λ (f (xi) + f (xi+1)) + (1− λ) (f (αi) + f (xi + xi+1 − αi)) ]∣∣∣∣∣∣ ≤ ≤  n−1∑ i=0 max { λ hi 2 , ( αi − (2− λ)xi + λxi+1 2 ) , ( xi + xi+1 2 − αi )} · xi+1∨ xi (f), n−1∑ i=0 hi 2 ·max  αi∨ xi (f) , xi+xi+1−αi∨ αi (f), xi+1∨ xi+xi+1−αi (f) , which completes the proof. Theorem 9. Let f as in Theorem 6, then we have b∫ a f(t)dt = Qn (In, f) +Rn (In, f) , where Qn (In, f) is defined by formula (5.1), and the remainder satisfies the estimates |Rn (In, f)| ≤ ≤ ∥∥f ′∥∥∞ n−1∑ i=0 [ h2i 8 ( 2λ2 + (1− λ)2 ) + 2 ( αi − (3− λ)xi + (1 + λ)xi+1 4 )2 ] for all λ ∈ [0, 1] and xi + λ xi+1 − xi 2 ≤ αi ≤ xi + xi+1 2 . Proof. The proof is similar to that of Theorem 7, using Theorem 6. We shall omit the details. Theorem 10. Let f as in Theorem 7, then we have b∫ a f(t)dt = Qn (In, f) +Rn (In, f) , where Qn (In, f) is defined by formula (5.1), and the remainder satisfies the estimates |Rn (In, f)| ≤ ( 2 q + 1 )1/q ∥∥f ′∥∥ p × × n−1∑ i=0 [( λ hi 2 )q+1 + ( xi + xi+1 2 − αi )q+1 + ( αi − (2− λ)xi + λxi+1 2 )q+1 ]1/q for all λ ∈ [0, 1] and xi + λ xi+1 − xi 2 ≤ αi ≤ xi + xi+1 2 . ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 4 450 M. W. ALOMARI Proof. The proof is similar to that of Theorem 8, using Theorem 8. We shall omit the details. 1. Alomari M. W., Darus M., Kirmaci U. S. Some inequalities of Hermite – Hadamard type for s-convex functions // Acta Math. Sci. – 2011. – 31B. – № 4. – P. 1643 – 1652. 2. Alomari M. W. A companion of Ostrowski’s inequality with applications // Trans. J. Math. and Mech. – 2011. – 3. – P. 9 – 14. 3. M. Alomari, Hussain S. Two inequalities of Simpson type for quasi-convex functions and applications // Appl. Math. E-Notes. – 2011. – 11. – P. 110 – 117. 4. Alomari M., Darus M., Kirmaci U. Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means // Comput. Math. Appl. – 2010. – 59. – P. 225 – 232. 5. Alomari M., Darus M., Dragomir S. S., Cerone P. Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense // Appl. Math. Lett. – 2010. – 23. – P. 1071 – 1076. 6. Alomari M., Darus M., Dragomir S. S. New inequalities of Hermite – Hadamard type for functions whose second derivatives absolute values are quasi-convex // Tamkang J. Math. – 2010. – 41. – P. 353 – 359. 7. Alomari M., Darus M. On some inequalities of Simpson-type via quasi-convex functions and applications // Trans. J. Math. and Mech. – 2010. – 2. – P. 15 – 24. 8. Alomari M., Darus M. Some Ostrowski type inequalities for quasi-convex functions with applications to special means // RGMIA Preprint. – 2010. – 13, № 2. – Article No. 3 [http://rgmia. org/papers/v13n2/quasi-convex. pdf]. 9. Barnett N. S., Dragomir S. S., Gomma I. A companion for the Ostrowski and the generalised trapezoid inequalities // J. Math. and Comput. Modelling. – 2009. – 50. – P. 179 – 187. 10. Cerone P., Dragomir S. S. Midpoint-type rules from an inequalities point of view // Handb. Anal. Comput. Methods in Appl. Math. / Ed. G. Anastsssiou. – New York: CRC Press, 2000. – P. 135 – 200. 11. Cerone P., Dragomir S. S. Trapezoidal-type rules from an inequalities point of view // Handb. Anal. Comput. Methods in Appl. Math. / Ed. G. Anastassiou. – New York: CRC Press, 2000. – P. 65 – 134. 12. Guessab A., Schmeisser G. Sharp integral inequalities of the Hermite – Hadamard type // J. Approxim. Theory. – 2002. – 115. – P. 260 – 288. 13. Dragomir S. S., Rassias Th. M. (Ed.) Ostrowski type inequalities and applications in numerical integration. – Dordrecht: Kluwer Acad. Publ., 2002. 14. Dragomir S. S. Some companions of Ostrowski’s inequality for absolutely continuous functions and applications // Bull. Korean Math. Soc. – 2005. – 42, № 2. – P. 213 – 230. 15. Dragomir S. S. A companion of Ostrowski’s inequality for functions of bounded variation and applications // RGMIA Preprint. – 2002. – 5, Suppl. – Article № 28 [http://ajmaa.org/RGMIA/papers/v5e/COIFBVApp.pdf]. 16. Dragomir S. S., Cerone P., Roumeliotis J. A new generalization of Ostrowski integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means // Appl. Math. Lett. – 2000. – 13, № 1. – P. 19 – 25. 17. Dragomir S. S., Agarwal R. P., Cerone P. On Simpson’s inequality and applications // J. Inequal. Appl. – 2000. – 5. – P. 533 – 579. 18. Dragomir S. S., Pearce C. E. M. Selected topics on Hermite – Hadamard inequalities and applications // RGMIA Monographs, Victoria Univ., 2000. Online: [http://www.staff.vu.edu.au/RGMIA/monographs/hermite_hadamard.html]. 19. Liu Z. Some companions of an Ostrowski type inequality and applications // J. Inequal. Pure and Appl. Math. – 2009. – 10, Issue 2. – Article 52. – 12 p. 20. Ujević N. A generalization of Ostrowski’s inequality and applications in numerical integration // Appl. Math. Lett. – 2004. – 17. – P. 133 – 137. Received 23.11.11 ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 4