Задача Неймана и одна задача с косой производной для неправильно эллиптического уравнения

Розглядається проблема розв’язностi неоднорiдної задачi Неймана i один випадок задачi зi скiсною похiдною в обмеженiй областi для скалярного неправильно елiптичного диференцiального рiвняння з комплексними коефiцiєнтами. Дослiджено модельний випадок, коли за область вибрано одиничний круг, а рiвнянн...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2012
Main Authors: Бурский, В.П., Лесина, Е.В.
Format: Article
Language:Russian
Published: Інститут математики НАН України 2012
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/164168
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Задача Неймана и одна задача с косой производной для неправильно эллиптического уравнения / В.П. Бурский, Е.В. Лесина // Український математичний журнал. — 2012. — Т. 64, № 4. — С. 451-462. — Бібліогр.: 15 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Розглядається проблема розв’язностi неоднорiдної задачi Неймана i один випадок задачi зi скiсною похiдною в обмеженiй областi для скалярного неправильно елiптичного диференцiального рiвняння з комплексними коефiцiєнтами. Дослiджено модельний випадок, коли за область вибрано одиничний круг, а рiвняння не має молодших членiв. Доведено, що класами граничних даних, для яких задачi мають єдиний розв’язок у просторi Соболєва, є простори функцiй з експоненцiальним спаданням коефiцiєнтiв Фур’є. We study the problem of solvability of an inhomogeneous Neumann problem and an oblique-derivative problem for an improperly elliptic scalar differential equation with complex coefficients in a bounded domain. A model case in which the domain is a unit disk and the equation does not contain lower-order terms is investigated. It is shown that the classes of boundary data for which these problems are uniquely solvable in a Sobolev space are formed by the spaces of functions with exponentially decreasing Fourier coefficients.
ISSN:1027-3190