Recognition of the groups L₅(4) and U₄(4) by the prime graph
Let G be a finite group. The prime graph of G is the graph Γ(G) whose set of vertices is the set Π(G) of all prime divisors of the order |G| and two different vertices p and q of which are connected by an edge if G has an element of order pq. We prove that if S is one of the simple groups L₅(4) and...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2012 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2012
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/164169 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Recognition of the groups L₅(4) and U₄(4) by the prime graph / P. Nosratpour, M.R. Darafsheh // Український математичний журнал. — 2012. — Т. 64, № 2. — С. 210-217. — Бібліогр.: 21 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Let G be a finite group. The prime graph of G is the graph Γ(G) whose set of vertices is the set Π(G) of all prime divisors of the order |G| and two different vertices p and q of which are connected by an edge if G has an element of order pq. We prove that if S is one of the simple groups L₅(4) and U₄(4) and G is a finite group with Γ(G) = Γ(S), then G has a normal subgroup N such that Π(N) ⊆ {2, 3, 5} and G/N≅S.
Нехай G — скiнченна група. Графом простих чисел групи G називають граф Γ(G), множиною вершин якого є множина Π(G) усiх простих дiльникiв порядку |G| i в якому двi рiзнi вершини p та q з’єднанi ребром, якщо G мiстить елемент порядку pq. Доведено, що, якщо S є однiєю з простих груп L₅(4) та U₄(4), а G є скiнченною групою, для якої Γ(G)=Γ(S), то G має нормальну пiдгрупу N таку, що Π(N)⊆{2,3,5} та G/N≅S.
|
|---|---|
| ISSN: | 1027-3190 |