On inequalities for the norms of intermediate derivatives of multiply monotone functions defined on a finite segment
We study the following modification of the Landau–Kolmogorov problem: Let k; r ∈ ℕ, 1 ≤ k ≤ r − 1, and p, q, s ∈ [1,∞]. Also let MM^m, m ∈ ℕ; be the class of nonnegative functions defined on the segment [0, 1] whose derivatives of orders 1, 2,…,m are nonnegative almost everywhere on [0, 1]. For ever...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 2012 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2012
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/164172 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On inequalities for the norms of intermediate derivatives of multiply monotone functions defined on a finite segment / D.S. Skorokhodov // Український математичний журнал. — 2012. — Т. 64, № 4. — С. 508-524. — Бібліогр.: 31 назв. — англ. |