Теорема Фрагмена – Ліндельофа для розв'язків еліптичних диференціальних рівнянь у банаховому просторі

Для дифференциального уравнения второго порядка эллиптического типа на полуоси в банаховом пространстве показано, что если порядок роста на бесконечности его решения не выше экспоненциального, то это решение экспоненциально стремится к нулю на бесконечности. For a second-order elliptic differential...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:2007
Автор: Горбачук, М.Л.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут математики НАН України 2007
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/164183
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Теорема Фрагмена – Ліндельофа для розв'язків еліптичних диференціальних рівнянь у банаховому просторі / М.Л. Горбачук // Український математичний журнал. — 2007. — Т. 59, № 5. — С. 650–657. — Бібліогр.: 7 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Для дифференциального уравнения второго порядка эллиптического типа на полуоси в банаховом пространстве показано, что если порядок роста на бесконечности его решения не выше экспоненциального, то это решение экспоненциально стремится к нулю на бесконечности. For a second-order elliptic differential equation considered on the semiaxis in a Banach space, we show that if the order of growth of its solution at infinity is not higher than the exponential order, then this solution exponentially tends to zero at infinity.
ISSN:1027-3190