Singularly perturbed self-adjoint operators in scales of Hilbert spaces
Finite rank perturbations of a semi-bounded self-adjoint operator A are studied in the scale of Hilbert spaces associated with A. A concept of quasi-boundary value space is used to describe self-adjoint operator realizations of regular and singular perturbations of A by the same formula. As an app...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2007 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2007
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/164191 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Singularly perturbed self-adjoint operators in scales of Hilbert spaces / S. Albeverio, S. Kuzhel, L. Nizhnik // Український математичний журнал. — 2007. — Т. 59, № 6. — С. 723–743. — Бібліогр.: 28 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Finite rank perturbations of a semi-bounded self-adjoint operator A are studied in the scale of Hilbert spaces
associated with A. A concept of quasi-boundary value space is used to describe self-adjoint operator realizations of regular and singular perturbations of A by the same formula. As an application the one-dimensional
Schrodinger operator with generalized zero-range potential is considered in the Sobolev space Wp₂(R), p ∈ N.
У шкалі гільбертових просторів, асоційованих з A, вивчаються скінченного рангу збурення напівобме-женого самоспряженого оператора A. Поняття квазіпростору граничних значень використовується для опису однією формулою самоспряжених операторних реалізацій як регулярних, так і сингулярних збурень оператора A. Як застосування, розглядається одновимірний оператор Шредінгера з узагальненим потенціалом нульового радіуса у просторі Соболева Wp₂(R),p∈N.
|
|---|---|
| ISSN: | 1027-3190 |