Spectral theory and Wiener-Itô decomposition for the image of a Jacobi field
Assume that K⁺ : H_ → T_ is a bounded operator, where H_ and T_ are Hilbert spaces and ρ is a measure on the space H_. Denote by ρK the image of the measure ρ under K⁺. This paper aims to study the measure ρK assuming ρ to be the spectral measure of a Jacobi field. We obtain a family of operators...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 2007 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2007
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/164192 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Spectral theory and Wiener-Itô decomposition for the image of a Jacobi field / Yu.M. Berezansky, A.D. Pulemyotov // Український математичний журнал. — 2007. — Т. 59, № 6. — С. 744–763. — Бібліогр.: 30 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Assume that K⁺ : H_ → T_ is a bounded operator, where H_ and T_ are Hilbert spaces and ρ is a measure
on the space H_. Denote by ρK the image of the measure ρ under K⁺. This paper aims to study the measure
ρK assuming ρ to be the spectral measure of a Jacobi field. We obtain a family of operators whose spectral
measure equals ρK. We also obtain an analogue of the Wiener – Ito decomposition for ˆ ρK. Finally, we illustrate
the results obtained by carrying out the explicit calculations for the case, where ρK is a Levy noise measure.
Припустимо, що K⁺:H_→T_ є обмеженим оператором, де H_ та T_ – гільбертові простори, i p – міра на просторі H_. Позначимо через ρK зображення міри ρ під дією K⁺. Метою цієї роботи є вивчення міри ρK за припущення, що ρ є спектральною мірою поля Якобі. Отримано сім'ю операторів із спектральною мірою, рівною ρK, а також аналог розкладу Вінера – Іто для ρK. Одержані результати проілюстровано явними розрахунками для випадку, коли ρK є мірою шуму Леві.
|
|---|---|
| ISSN: | 1027-3190 |