Bogolyubov averaging and normalization procedures in nonlinear mechanics. IV

In this paper, we apply the theory developed in parts I-III to some classes of problems. We consider linear systems in zero approximation and investigate the problem of invariance of integral manifolds under perturbations. Unlike nonlinear systems, linear ones have centralized systems, which are al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:1995
Hauptverfasser: Lopatin, A.K., Mitropolskiy, Yu.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 1995
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/164245
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Bogolyubov averaging and normalization procedures in nonlinear mechanics. IV / A.K. Lopatin, Yu.A. Mitropolskiy // Український математичний журнал. — 1995. — Т. 47, № 8. — С. 1044–1068. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:In this paper, we apply the theory developed in parts I-III to some classes of problems. We consider linear systems in zero approximation and investigate the problem of invariance of integral manifolds under perturbations. Unlike nonlinear systems, linear ones have centralized systems, which are always decomposable. Moreover, restrictions connected with the impossibility of diagonalization of the coefficient matrix in zero approximation are removed. In conclusion, we apply the method of local asymptotic decomposition to some mechanical problems. Теорія, розвинена в роботах [1 - 3], застосовується до деяких класів проблем. Розглянуто лінійні в нульовому наближенні системи. Досліджено питання збереження інтегральних многовидів під дією збурень. На відміну від нелінійних систем лінійні мають централізовані системи, які завжди можуть бути декомпозовані. При цьому знято обмеження, які пов'язані з недіагональністю системи в нульовому наближенні. На завершення метод локальної асимптотичної декомпозиції застосовано до деяких задач механіки.
ISSN:1027-3190