О точных константах в неравенствах для норм производных на конечном отрезке
Доведено, що в адитивній нерівності для норм проміжних похідних функцій, які визначені на скінченному відрізку і дорівнюють нулю у заданій системі точок, найменше можливе значення константи при нормі функції співпадає з точною константою у відповідній нерівності типу Маркова - Нікольського для алгеб...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 1999 |
| Main Authors: | , |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут математики НАН України
1999
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/164288 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | О точных константах в неравенствах для норм производных на конечном отрезке / В.Ф. Бабенко, Ж.Б. Удраого // Український математичний журнал. — 1999. — Т. 51, № 1. — С. 117–119. — Бібліогр.: 4 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Доведено, що в адитивній нерівності для норм проміжних похідних функцій, які визначені на скінченному відрізку і дорівнюють нулю у заданій системі точок, найменше можливе значення константи при нормі функції співпадає з точною константою у відповідній нерівності типу Маркова - Нікольського для алгебраїчних поліномів, які теж дорівнюють нулю у цій системі точок.
We prove that, in an additive inequality for norms of intermediate derivatives of functions defined on a finite segment and equal to zero at a given system of points, the least possible value of a constant coefficient of the norm of a function coincides with the exact constant in the corresponding Markov-Nikol'skii inequality for algebraic polynomials that are also equal to zero at this system of points.
|
|---|---|
| ISSN: | 1027-3190 |