Coconvex Pointwise Approximation
Assume that a function f ∈ C[−1, 1] changes its convexity at a finite collection Y := {y 1, ... y s} of s points yi ∈ (−1, 1). For each n > N(Y), we construct an algebraic polynomial Pn of degree ≤ n that is coconvex with f, i.e., it changes its convexity at the same points yi as f and |f(x)−P...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 2002 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2002
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/164317 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Coconvex Pointwise Approximation / G.A. Dzyubenko, J.Gilewicz, I.A. Shevchuk // Український математичний журнал. — 2002. — Т. 54, № 9. — С. 1200–1212. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-164317 |
|---|---|
| record_format |
dspace |
| spelling |
Dzyubenko, G.A. Gilewicz, J. Shevchuk, I.A. 2020-02-09T08:47:46Z 2020-02-09T08:47:46Z 2002 Coconvex Pointwise Approximation / G.A. Dzyubenko, J.Gilewicz, I.A. Shevchuk // Український математичний журнал. — 2002. — Т. 54, № 9. — С. 1200–1212. — Бібліогр.: 17 назв. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/164317 517.5 Assume that a function f ∈ C[−1, 1] changes its convexity at a finite collection Y := {y 1, ... y s} of s points yi ∈ (−1, 1). For each n > N(Y), we construct an algebraic polynomial Pn of degree ≤ n that is coconvex with f, i.e., it changes its convexity at the same points yi as f and |f(x)−Pn(x)| ≤ cω₂ (f, (√(1−x²))/n,x∈[−1,1], where c is an absolute constant, ω₂(f, t) is the second modulus of smoothness of f, and if s = 1, then N(Y) = 1. We also give some counterexamples showing that this estimate cannot be extended to the case of higher smoothness. Нехай функція f ∈ C[−1,1] змінює свою опуклість у скінченному наборі Y := {y₁,...ys} точок yi ∈ (−1,1). Для кожного n > N(Y) будується алгебраїчний многочлен Pn степеня ≤n, який є коопуклим з f, тобто змінює свою опуклість в тих самих точках yi, що й f, а |f(x)−Pn(x)| ≤ cω₂ (f, (√(1−x²))/n,x∈[−1,1], де c — абсолютна стала, ω₂(f,t)—другий модуль неперервності f, і якщо s=1, то N(Y)=1. Наведено також контрприклади, що показують, зокрема, неможливість поширення цієї оцінки для більшої гладкості. en Інститут математики НАН України Український математичний журнал Статті Coconvex Pointwise Approximation Коопукле поточкове наближення Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Coconvex Pointwise Approximation |
| spellingShingle |
Coconvex Pointwise Approximation Dzyubenko, G.A. Gilewicz, J. Shevchuk, I.A. Статті |
| title_short |
Coconvex Pointwise Approximation |
| title_full |
Coconvex Pointwise Approximation |
| title_fullStr |
Coconvex Pointwise Approximation |
| title_full_unstemmed |
Coconvex Pointwise Approximation |
| title_sort |
coconvex pointwise approximation |
| author |
Dzyubenko, G.A. Gilewicz, J. Shevchuk, I.A. |
| author_facet |
Dzyubenko, G.A. Gilewicz, J. Shevchuk, I.A. |
| topic |
Статті |
| topic_facet |
Статті |
| publishDate |
2002 |
| language |
English |
| container_title |
Український математичний журнал |
| publisher |
Інститут математики НАН України |
| format |
Article |
| title_alt |
Коопукле поточкове наближення |
| description |
Assume that a function f ∈ C[−1, 1] changes its convexity at a finite collection Y := {y 1, ... y s} of s points yi ∈ (−1, 1). For each n > N(Y), we construct an algebraic polynomial Pn of degree ≤ n that is coconvex with f, i.e., it changes its convexity at the same points yi as f and
|f(x)−Pn(x)| ≤ cω₂ (f, (√(1−x²))/n,x∈[−1,1],
where c is an absolute constant, ω₂(f, t) is the second modulus of smoothness of f, and if s = 1, then N(Y) = 1. We also give some counterexamples showing that this estimate cannot be extended to the case of higher smoothness.
Нехай функція f ∈ C[−1,1] змінює свою опуклість у скінченному наборі Y := {y₁,...ys} точок yi ∈ (−1,1). Для кожного n > N(Y) будується алгебраїчний многочлен Pn степеня ≤n, який є коопуклим з f, тобто змінює свою опуклість в тих самих точках yi, що й f, а
|f(x)−Pn(x)| ≤ cω₂ (f, (√(1−x²))/n,x∈[−1,1],
де c — абсолютна стала, ω₂(f,t)—другий модуль неперервності f, і якщо s=1, то N(Y)=1. Наведено також контрприклади, що показують, зокрема, неможливість поширення цієї оцінки для більшої гладкості.
|
| issn |
1027-3190 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/164317 |
| citation_txt |
Coconvex Pointwise Approximation / G.A. Dzyubenko, J.Gilewicz, I.A. Shevchuk // Український математичний журнал. — 2002. — Т. 54, № 9. — С. 1200–1212. — Бібліогр.: 17 назв. — англ. |
| work_keys_str_mv |
AT dzyubenkoga coconvexpointwiseapproximation AT gilewiczj coconvexpointwiseapproximation AT shevchukia coconvexpointwiseapproximation AT dzyubenkoga koopuklepotočkovenabližennâ AT gilewiczj koopuklepotočkovenabližennâ AT shevchukia koopuklepotočkovenabližennâ |
| first_indexed |
2025-12-07T17:25:42Z |
| last_indexed |
2025-12-07T17:25:42Z |
| _version_ |
1850871216932388864 |