Powers of the curvature operator of space forms and geodesics of the tangent bundle
It is well known that if Г is a geodesic line of the tangent (sphere) bundle with Sasaki metric of a locally symmetric Riemannian manifold, then all geodesic curvatures of the projected curve λ=π₁₄₆₃₋₀₁ Г are constant. In this paper, we consider the case of the tangent (sphere) bundle over real, com...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 2004 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2004
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/164369 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Powers of the curvature operator of space forms and geodesics of the tangent bundle / E. Sakharova, A. Yampolsky // Український математичний журнал. — 2004. — Т. 56, № 9. — С. 1231–1243. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | It is well known that if Г is a geodesic line of the tangent (sphere) bundle with Sasaki metric of a locally symmetric Riemannian manifold, then all geodesic curvatures of the projected curve λ=π₁₄₆₃₋₀₁ Г are constant. In this paper, we consider the case of the tangent (sphere) bundle over real, complex, and quaternionic space forms and give a unified proof of the following property: All geodesic curvatures of the projected curve are zero beginning with k₃, k₆, and k₁₀ for the real, complex, and quaternionic space forms, respectively.
Відомо, що якщо Г — геодезична лінія дотичного (сферичного) розшарування з метрикою Сасакі локально-симетричного ріманона многовиду, то всі геодезичні кривизни спроектованої кривої λ=π₁₄₆₃₋₀₁ є константами. У даній статті розглянуто випадок (сферичного) дотичного розшарування над дійсними, комплексними та кватерніонними просторовими формами і наведено уніфіковане доведения наступної властивості: всі геодезичні кривизни спроектованої кривої дорівнюють нулю, починаючи з k₃, k₆, та k₁₀ відповідно для дійсної, комплексної та кватерпіонної форм.
|
|---|---|
| ISSN: | 1027-3190 |