A new application of generalized quasipower increasing sequences

We prove a theorem on ∣ N¯,pn,θn ∣k-summability by using a new general class of power increasing sequences instead of a quasi-η-power increasing sequence. This theorem also includes some new and known results. Доведено теорему про | N¯, pn, θn |k-сумовнiсть iз використанням нового загального класу п...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2012
1. Verfasser: Bor, H.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/164410
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A new application of generalized quasipower increasing sequences / H. Bor // Український математичний журнал. — 2012. — Т. 64, № 6. — С. 731-738. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-164410
record_format dspace
spelling Bor, H.
2020-02-09T14:40:35Z
2020-02-09T14:40:35Z
2012
A new application of generalized quasipower increasing sequences / H. Bor // Український математичний журнал. — 2012. — Т. 64, № 6. — С. 731-738. — Бібліогр.: 12 назв. — англ.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/164410
517.5
We prove a theorem on ∣ N¯,pn,θn ∣k-summability by using a new general class of power increasing sequences instead of a quasi-η-power increasing sequence. This theorem also includes some new and known results.
Доведено теорему про | N¯, pn, θn |k-сумовнiсть iз використанням нового загального класу послiдовностей степеневого зростання замiсть послiдовностi квазi-η-степеневого зростання. Окремими випадками цiєї теореми є деякi новi та вiдомi результати.
en
Інститут математики НАН України
Український математичний журнал
Статті
A new application of generalized quasipower increasing sequences
Нове застосування узагальнених послiдовностей квазiстепеневого зростання
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A new application of generalized quasipower increasing sequences
spellingShingle A new application of generalized quasipower increasing sequences
Bor, H.
Статті
title_short A new application of generalized quasipower increasing sequences
title_full A new application of generalized quasipower increasing sequences
title_fullStr A new application of generalized quasipower increasing sequences
title_full_unstemmed A new application of generalized quasipower increasing sequences
title_sort new application of generalized quasipower increasing sequences
author Bor, H.
author_facet Bor, H.
topic Статті
topic_facet Статті
publishDate 2012
language English
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Нове застосування узагальнених послiдовностей квазiстепеневого зростання
description We prove a theorem on ∣ N¯,pn,θn ∣k-summability by using a new general class of power increasing sequences instead of a quasi-η-power increasing sequence. This theorem also includes some new and known results. Доведено теорему про | N¯, pn, θn |k-сумовнiсть iз використанням нового загального класу послiдовностей степеневого зростання замiсть послiдовностi квазi-η-степеневого зростання. Окремими випадками цiєї теореми є деякi новi та вiдомi результати.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/164410
citation_txt A new application of generalized quasipower increasing sequences / H. Bor // Український математичний журнал. — 2012. — Т. 64, № 6. — С. 731-738. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT borh anewapplicationofgeneralizedquasipowerincreasingsequences
AT borh novezastosuvannâuzagalʹnenihposlidovnosteikvazistepenevogozrostannâ
AT borh newapplicationofgeneralizedquasipowerincreasingsequences
first_indexed 2025-11-25T20:37:24Z
last_indexed 2025-11-25T20:37:24Z
_version_ 1850524370125979648
fulltext UDC 517.5 H. Bor (Ankara, Turkey) A NEW APPLICATION OF GENERALIZED QUASI-POWER INCREASING SEQUENCES НОВЕ ЗАСТОСУВАННЯ УЗАГАЛЬНЕНИХ ПОСЛIДОВНОСТЕЙ КВАЗIСТЕПЕНЕВОГО ЗРОСТАННЯ We prove a theorem dealing with | N̄ , pn, θn |k-summability using a new general class of power increasing sequences instead of a quasi-η-power increasing sequence. This theorem also includes some new and known results. Доведено теорему про | N̄ , pn, θn |k-сумовнiсть iз використанням нового загального класу послiдовностей степе- невого зростання замiсть послiдовностi квазi-η-степеневого зростання. Окремими випадками цiєї теореми є деякi новi та вiдомi результати. 1. Introduction. A positive sequence (bn) is said to be almost increasing if there exists a positive increasing sequence (cn) and two positive constants A and B such that Acn ≤ bn ≤ Bcn (see [1]). We write BVO = BV ∩ CO, where CO = { x = (xk) ∈ Ω: limk |xk| = 0} , BV = { x = (xk) ∈ Ω:∑ k |xk − xk+1| < ∞ } and Ω being the space of all real-valued sequences. A positive sequence (δn) is said to be a quasi-η-power increasing sequence if there exists a constant K = K(η, δ) ≥ 1 such that Knηδn ≥ mηδm holds for all n ≥ m ≥ 1 (see [9]). Let ∑ an be a given infinite series with partial sums (sn). We denote by tn the nth (C,1) mean of the sequence (nan), that is, tn = 1 n ∑n v=1 vav. A series ∑ an is said to be summable |C, 1|k, k ≥ 1, if (see [7]) ∞∑ n=1 1 n |tn|k <∞. (1) Let (pn) be a sequence of positive real numbers such that Pn = n∑ v=0 pv →∞ as n→∞ (P−i = p−i = 0, i ≥ 1). (2) The sequence-to-sequence transformation σn = 1 Pn n∑ v=0 pvsv (3) defines the sequence (σn) of the Riesz mean or simply the (N̄ , pn) mean of the sequence (sn), generated by the sequence of coefficients (pn) (see [8]). The series ∑ an is said to be summable |N̄ , pn|k, k ≥ 1, if (see [2]) c© H. BOR, 2012 ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 6 731 732 H. BOR ∞∑ n=1 (Pn/pn)k−1|∆σn−1|k <∞, (4) where ∆σn−1 = σn − σn−1 = − pn PnPn−1 n∑ v=1 Pv−1av, n ≥ 1. (5) In the special case pn = 1 for all values of n, |N̄ , pn|k summability is the same as |C, 1|k summa- bility. Let (θn) be any sequence of positive constants. The series ∑ an is said to be summable |N̄ , pn, θn|k, k ≥ 1, if (see [11]) ∞∑ n=1 θk−1n |∆σn−1|k <∞. (6) If we take θn = Pn pn , then |N̄ , pn, θn|k summability reduces to |N̄ , pn|k summability. Also, if we take θn = n and pn = 1 for all values of n, then we get |C, 1|k summability. Furthermore, if we take θn = n, then |N̄ , pn, θn|k summability reduces to |R, pn|k (see [4]) summability. 2. Known result. In [6], we have proved the following main theorem dealing with |N̄ , pn, θn|k summability factors of infinite series. Theorem A. Let ( θnpn Pn ) be a non-increasing sequence, (λn) ∈ BVO and (Xn) be a quasi- η-power increasing sequence for some η (0 < η < 1). Suppose also that there exist sequences (βn) and (λn) such that |∆λn| ≤ βn, (7) βn → 0 as n→∞, (8) ∞∑ n=1 n|∆βn|Xn <∞, (9) |λn|Xn = O(1). (10) If n∑ v=1 θk−1v v−k|sv|k = O(Xn) as n→∞, (11) and (pn) is a sequence such that Pn = O(npn), (12) Pn∆pn = O(pnpn+1), (13) ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 6 A NEW APPLICATION OF GENERALIZED QUASI-POWER INCREASING SEQUENCES 733 then the series ∑∞ n=1 an Pnλn npn is summable |N̄ , pn, θn|k, k ≥ 1. If we take (Xn) as an almost increasing sequence and θn = Pn pn in Theorem A, then we get a result which was published in [3], in this case the condition “ ( θnpn Pn ) is a non-increasing sequence” is automatically satisfied and the condition (λn) ∈ BVO is not needed. Remark. It should be noted that, we can take (λn) ∈ BV instead of (λn) ∈ BVO and it is sufficient to prove Theorem A. 3. Main result. In the present paper, we have generalized Theorem A by using a quasi-f -power increasing sequence instead of a quasi η-power increasing sequence. For this purpose, we need the concept of a quasi-f -power increasing sequence. A positive sequence α = (αn) is said to be a quasi- f -power increasing sequence, if there exists a constantK = K(α, f) ≥ 1 such thatKfnαn ≥ fmαm, holds for n ≥ m ≥ 1, where f = (fn) = [ nη(log n)σ, σ ≥ 0, 0 < η < 1 ] (see [12]). It should be noted that, if we take σ=0, then we get a quasi-η-power increasing sequence. Now, we shall prove the following general theorem. Theorem . Let ( θnpn Pn ) be a non-increasing sequence, (λn) ∈ BV and (Xn) be a quasi-f- power increasing sequence. If the conditions (7) – (13) of Theorem A are satisfied, then the series∑∞ n=1 an Pnλn npn is summable |N̄ , pn, θn|k, k ≥ 1. If we take σ = 0, then we have Theorem A. We require the following lemmas for the proof of the theorem. Lemma 1. Except for the condition (λn) ∈ BV, under the conditions on (Xn), (βn) and (λn) as expressed in the statement of the theorem, we have the following : nXnβn = O(1), (14) ∞∑ n=1 βnXn <∞. (15) Proof. Since βn → 0, then we have ∆βn → 0, and hence ∞∑ n=1 βnXn ≤ ∞∑ n=1 Xn ∞∑ v=n |∆βv| = ∞∑ v=1 |∆βv| v∑ n=1 Xn = = ∞∑ v=1 |∆βv| v∑ n=1 nη(log n)σXnn −η(log n)−σ = = O(1) ∞∑ v=1 |∆βv|vη(log v)σXv v∑ n=1 n−η(log n)−σ = = O(1) ∞∑ v=1 |∆βv|vη(log v)σXv v∑ n=1 nε(log n)−σn−η−ε = ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 6 734 H. BOR = O(1) ∞∑ v=1 |∆βv|vηXv(log v)σvε(log v)−σ v∑ n=1 n−η−ε = = O(1) ∞∑ v=1 |∆βv|vη+εXv v∫ 0 x−η−εdx = = O(1) ∞∑ v=1 |∆βv|vη+εXvv 1−η−ε = = O(1) ∞∑ v=1 v|∆βv|Xv = O(1), 0 < ε < η + ε < 1. Again, we have that nβnXn = nXn ∞∑ v=n ∆βv ≤ nXn ∞∑ v=n |∆βv| = = n1−η(log n)−σnη(log n)σXn ∞∑ v=n |∆βv| ≤ ≤ n1−η(log n)−σ ∞∑ v=n vη(log v)σXv|∆βv| ≤ ≤ ∞∑ n=v v1−η(log v)−σXvv η(log v)σ|∆βv| = = ∞∑ v=1 vXv|∆βv| = O(1). Lemma 1 is proved. Lemma 2 [10]. If the conditions (12) and (13) are satisfied, then we have that ∆ ( Pn npn ) = O ( 1 n ) . (16) 4. Proof of the theorem. Let (Tn) be the sequence of (N̄ , pn) mean of the series ∑∞ n=1 anPnλn npn . Then, by definition, we have Tn = 1 Pn n∑ v=1 pv v∑ r=1 arPrλr rpr = 1 Pn n∑ v=1 (Pn − Pv−1) avPvλv vpv . (17) Then Tn − Tn−1 = pn PnPn−1 n∑ v=1 Pv−1Pvavλv vpv , n ≥ 1. (18) ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 6 A NEW APPLICATION OF GENERALIZED QUASI-POWER INCREASING SEQUENCES 735 Using Abel’s transformation, we get Tn − Tn−1 = pn PnPn−1 n∑ v=1 sv∆ ( Pv−1Pvλv vpv ) + λnsn n = = snλn n + pn PnPn−1 n−1∑ v=1 sv Pv+1Pv∆λv (v + 1)pv+1 + + pn PnPn−1 n−1∑ v=1 Pvsvλv∆ ( Pv vpv ) − pn PnPn−1 n−1∑ v=1 svPvλv 1 v = = Tn,1 + Tn,2 + Tn,3 + Tn,4, say. To prove the theorem, by Minkowski’s inequality, it is sufficient to show for k ≥ 1 ∞∑ n=1 θk−1n |Tn,r|k <∞ for r = 1, 2, 3, 4. (19) Firstly, by using Abel’s transformation, we have that m∑ n=1 θk−1n |Tn,1|k = m∑ n=1 θk−1n n−k|λn|k−1|λn||sn|k = = O(1) m∑ n=1 |λn|θk−1n n−k|sn|k = = O(1) m−1∑ n=1 ∆|λn| n∑ v=1 θk−1v v−k|sv|k +O(1)|λm| m∑ n=1 θk−1n n−k|sn|k = = O(1) m−1∑ n=1 |∆λn|Xn +O(1)|λm|Xm = = O(1) m−1∑ n=1 βnXn +O(1)|λm|Xm = O(1) as m→∞ by virtue of (7), (10), (11) and (15). Now, using the fact that Pv+1 = O ((v + 1)pv+1) by (12), and applying Hölder’s inequality we have that m+1∑ n=2 θk−1n |Tn,2|k = O(1) m+1∑ n=2 θk−1n ( pn Pn )k 1 P kn−1 ∣∣∣∣∣ n−1∑ v=1 Pvsv∆λv ∣∣∣∣∣ k = = O(1) m+1∑ n=2 θk−1n ( pn Pn )k 1 P kn−1 { n−1∑ v=1 Pv pv |sv|pv|∆λv| }k = ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 6 736 H. BOR = O(1) m+1∑ n=2 θk−1n ( pn Pn )k 1 Pn−1 n−1∑ v=1 ( Pv pv )k |sv|kpv (βv) k ( 1 Pn−1 n−1∑ v=1 pv )k−1 = = O(1) m∑ v=1 ( Pv pv )k |sv|kpv (βv) k m+1∑ n=v+1 ( θnpn Pn )k−1 pn PnPn−1 = = O(1) m∑ v=1 ( Pv pv )k |sv|kpv (βv) k ( θvpv Pv )k−1 m+1∑ n=v+1 pn PnPn−1 = = O(1) m∑ v=1 ( Pv pv )k |sv|k (βv) k ( pv Pv ) θk−1v ( pv Pv )k−1 = = O(1) m∑ v=1 (vβv) k−1vβv 1 vk θk−1v |sv|k = = O(1) m∑ v=1 vβvθ k−1 v v−k|sv|k = = O(1) m−1∑ v=1 ∆(vβv) v∑ r=1 θk−1r r−k|sr|k +O(1)mβm m∑ v=1 θk−1v v−k|sv|k = = O(1) m−1∑ v=1 |∆(vβv)|Xv +O(1)mβmXm = = O(1) m−1∑ v=1 v|∆βv|Xv +O(1) m−1∑ v=1 βvXv +O(1)mβmXm = O(1) as m→∞, in view of (7), (9), (11), (14) and (15). Again, we have that m+1∑ n=2 θk−1n |Tn,3|k = O(1) m+1∑ n=2 θk−1n ( pn Pn )k 1 P kn−1 { n−1∑ v=1 Pv|sv||λv| 1 v }k = = O(1) m+1∑ n=2 θk−1n ( pn Pn )k 1 Pn−1 n−1∑ v=1 ( Pv pv )k v−kpv|sv|k|λv|k { 1 Pn−1 n−1∑ v=1 pv }k−1 = = O(1) m∑ v=1 ( Pv pv )k v−k|sv|kpv|λv|k m+1∑ n=v+1 ( θnpn Pn )k−1 pn PnPn−1 = ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 6 A NEW APPLICATION OF GENERALIZED QUASI-POWER INCREASING SEQUENCES 737 = O(1) m∑ v=1 ( Pv pv )k−1 v−kθk−1v ( pv Pv )k−1 |λv|k−1|λv||sv|k = = O(1) m∑ v=1 |λv|θk−1v v−k|sv|k = = O(1) m−1∑ v=1 βvXv +O(1)|λm|Xm = O(1) as m→∞, in view of (7), (10), (11), (15) and (16). Finally, using Hölder’s inequality, as in Tn,3 we have that m+1∑ n=2 θk−1n |Tn,4|k = m+1∑ n=2 θk−1n ( pn Pn )k 1 P kn−1 ∣∣∣∣∣ n−1∑ v=1 sv Pv v λv ∣∣∣∣∣ k = = O(1) m+1∑ n=2 θk−1n ( pn Pn )k 1 P kn−1 ∣∣∣∣∣ n−1∑ v=1 sv Pv vpv pvλ ∣∣∣∣∣ k = = O(1) m+1∑ n=2 θk−1n ( pn Pn )k 1 Pn−1 n−1∑ v=1 |sv|k ( Pv pv )k v−kpv|λv|k ( 1 Pn−1 n−1∑ v=1 pv )k−1 = = O(1) m∑ v=1 ( Pv pv )k v−k|sv|kpv|λv|k 1 Pv ( θvpv Pv )k−1 = = O(1) m∑ v=1 ( Pv pv )k−1 v−k ( pv Pv )k−1 θk−1v |λv|k−1|λv||sv|k = = O(1) m∑ v=1 |λv|θk−1v v−k|sv|k = = O(1) m−1∑ v=1 βvXv +O(1)|λm|Xm = O(1) as m→∞. Therefore, we get that m∑ n=1 θk−1n |Tn,r|k = O(1) as m→∞, for r = 1, 2, 3, 4. This completes the proof of the theorem. If we take pn = 1 for all values of n, then we have a new result for |C, 1, θn|k summability. Furthermore, if we take θn = n, then we have another new result for |R, pn|k summability. Finally, if we take pn = 1 for all values of n and θn = n, then we get a new result dealing with |C, 1|k summability factors. ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 6 738 H. BOR 1. Bari N. K., Stečkin S. B. est approximation and differential proprerties of two conjugate functions (in Russian) // Trudy Mosk. Mat. Obshch. – 1956. – 5. – P. 483 – 522. 2. Bor H. On two summability methods // Math. Proc. Cambridge Phil. Soc. – 1985. – 97. – P. 147 – 149. 3. Bor H. A note on |N̄ , pn|k summability factors of infinite series // Indian J. Pure and Appl. Math. – 1987. – 18. – P. 330 – 336. 4. Bor H. On the relative strength of two absolute summability methods // Proc. Amer. Math. Soc. – 1991. – 113. – P. 1009 – 1012. 5. Bor H. A general note on increasing sequences // J. Inequal. Pure and Appl. Math. – 2007. – 8. – Article 82 (electronic). 6. Bor H. New application of power increasing sequences // An. şti. Univ. Iaşi. Mat. (N.S.) (to appear). 7. Flett T. M. On an extension of absolute summability and some theorems of Littlewood and Paley // Proc. London Math. Soc. – 1957. – 7. – P. 113 – 141. 8. Hardy G. H. Divergent series. – Oxford: Oxford Univ. Press, 1949. 9. Leindler L. A new application of quasi power increasing sequences // Publ. Math. Debrecen. – 2001. – 58. – P. 791 – 796. 10. Mishra K. N., Srivastava R. S. L. On |N̄ , pn| summability factors of infinite series // Indian J. Pure and Appl. Math. – 1984. – 15. – P. 651 – 656. 11. Sulaiman W. T. On some summability factors of infinite series // Proc. Amer. Math. Soc. – 1992. – 115. – P. 313 – 317. 12. Sulaiman W. T. Extension on absolute summability factors of infinite series // J. Math. Anal. and Appl. – 2006. – 322. – P. 1224 – 1230. Received 31.08.11 ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 6