Integral manifolds for semilinear evolution equations and admissibility of function spaces

We prove the existence of integral (stable, unstable, and center) manifolds for the solutions to a semilinear integral equation in the case where the evolution family (U(t, s)) t≥s has an exponential trichotomy on a half line or on the whole line, and the nonlinear forcing term f satisfies the φ-Li...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:2012
Автори: Vu Thi Ngoc Ha, Nguyen Thieu Huy, Ha Phi
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/164414
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Integral manifolds for semilinear evolution equations and admissibility of function spaces / Vu Thi Ngoc Ha, Nguyen Thieu Huy, Ha Phi // Український математичний журнал. — 2012. — Т. 64, № 6. — С. 772-796. — Бібліогр.: 37 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We prove the existence of integral (stable, unstable, and center) manifolds for the solutions to a semilinear integral equation in the case where the evolution family (U(t, s)) t≥s has an exponential trichotomy on a half line or on the whole line, and the nonlinear forcing term f satisfies the φ-Lipschitz conditions, i.e., where φ(t) belongs to some classes of admissible function spaces. Our main method is based on the Lyapunov–Perron methods, rescaling procedures, and the techniques of using the admissibility of function spaces. Доведено iснування iнтегральних (стiйких, нестiйких, центральних) многовидiв для розв’язкiв напiвлiнiйного iнтегрального рiвняння у випадку, коли сiм’я еволюцiй (U(t,s))tleqs має експоненцiальну трихотомiю на пiвосi або на всiй осi, а нелiнiйний збурюючий член f задовольняє φ-лiпшицевi умови, тобто належить до деяких класiв допустимих просторiв функцiй. Наш основний метод базується на методах Ляпунова – Перрона, процедурах перемасштабування та технiцi застосування допустимостi просторiв функцiй.
ISSN:1027-3190