Shape-preserving projections in low-dimensional settings and the q-monotone case
Let P:X → V be a projection from a real Banach space X onto a subspace V and let S ⊂ X. In this setting, one can ask if S is left invariant under P, i.e., if PS ⊂ S. If V is finite-dimensional and S is a cone with particular structure, then the occurrence of the imbedding PS ⊂ S can be characterized...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2012 |
| Main Authors: | Prophet, M.P., Shevchuk, I.A. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2012
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/164420 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Shape-preserving projections in low-dimensional settings and the q-monotone case / M.P. Prophet, I.A. Shevchuk // Український математичний журнал. — 2012. — Т. 64, № 5. — С. 674-684. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Convergence rates in regularization for the case of monotone perturbations
by: Nguen Byong
Published: (2000) -
No Jackson-type estimates for piecewise q-monotone, q≥3, trigonometric approximation
by: D. Leviatan, et al.
Published: (2022) -
Restrictions for order of q-monotone approximation of periodic functions
by: H. A. Dziubenko
Published: (2015) -
Self-Affine Singular and Nowhere Monotone Functions Related to the Q-Representation of Real Numbers
by: M. V. Pratsovytyi, et al.
Published: (2013) -
Remarks on monotone and convex approximation by algebraic polynomials
by: Kopotun, K.A., et al.
Published: (1994)