Неравенства для производных функций на оси с несимметрично ограниченными старшими производными

Для неперiодичних функцiй x∈Lr∞(R), що заданi на всiй дiйснiй осi, доведено аналоги нерiвностi В. Ф. Бабенка. Отриманi нерiвностi оцiнюють норми похiдних ||x(k)±||Lq[a,b] на довiльному промiжку [a,b]⊂R такому, що x^(k)(a)=x^(k) (b)=0, через локальнi Lp-норми функцiй x i рiвномiрнi несиметричнi норми...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:2012
Автор: Кофанов, В.А.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2012
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/164428
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Неравенства для производных функций на оси с несимметрично ограниченными старшими производными / В.А. Кофанов // Український математичний журнал. — 2012. — Т. 64, № 5. — С. 636-648. — Бібліогр.: 11 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Для неперiодичних функцiй x∈Lr∞(R), що заданi на всiй дiйснiй осi, доведено аналоги нерiвностi В. Ф. Бабенка. Отриманi нерiвностi оцiнюють норми похiдних ||x(k)±||Lq[a,b] на довiльному промiжку [a,b]⊂R такому, що x^(k)(a)=x^(k) (b)=0, через локальнi Lp-норми функцiй x i рiвномiрнi несиметричнi норми старших похiдних x(r) цих функцiй. For nonperiodic functions x∈Lr∞(R) defined on the entire real axis, we prove analogs of the Babenko inequality. The obtained inequalities estimate the norms of derivatives ∥∥x(k)±∥∥Lq[a,b] on an arbitrary interval [a, b] ⊂ R such that x^(k) (a) = x^(k) (b) = 0 via local L p -norms of the functions x and uniform nonsymmetric norms of the higher derivatives x(r) of these functions.
ISSN:1027-3190