Приближение некоторых классов функций многих переменных гармоническими сплайнами

Знайдено точнi значення верхнiх меж похибок наближення гармонiчними сплайнами заданих на n-вимiрному паралелепiпедi Ω функцiй u таких, що ||Δu||L∞(Ω)≤1, у просторах ||Δu||Lp(Ω)≤1,1≤p≤∞, та функцiй u таких, що Lp(Ω),1≤p≤∞, у просторi L1(Ω). We determine the exact values of the upper bounds of the err...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:2012
Автори: Бабенко, В.Ф., Лескевич, Т.Ю.
Формат: Стаття
Мова:Russian
Опубліковано: Український математичний журнал 2012
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/164434
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Приближение некоторых классов функций многих переменных гармоническими сплайнами / В.Ф. Бабенко, Т.Ю. Лескевич // Український математичний журнал. — 2012. — Т. 64, № 8. — С. 1011-1024. — Бібліогр.: 17 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Знайдено точнi значення верхнiх меж похибок наближення гармонiчними сплайнами заданих на n-вимiрному паралелепiпедi Ω функцiй u таких, що ||Δu||L∞(Ω)≤1, у просторах ||Δu||Lp(Ω)≤1,1≤p≤∞, та функцiй u таких, що Lp(Ω),1≤p≤∞, у просторi L1(Ω). We determine the exact values of the upper bounds of the errors of approximation by harmonic splines for functions u defined on an n-dimensional parallelepiped Ω and such that ||Δu|| L∞(Ω) ≤ 1 and functions u defined on Ω and such that ||Δu|| L∞(Ω) ≤ 1, 1 ≤ p ≤ ∞. In the first case, the error is estimated in L p (Ω). 1 ≤ p ≤ ∞. In the second case, the error is estimated in L 1(Ω).
ISSN:1027-3190