Задача Коші для рівнянь з дробовими похідними за часовою та просторовими змінними у просторах узагальнених функцій

Доказана теорема существования и единственности и получено представление с помощью вектор-функции Грина решения задачи Коши с производной Римана – Лиувилля u(β)t порядка β∈(0,1) и u0, F из пространств обобщенных функций. Установлен характер особенностей решения при t=0 в зависимости от порядка синг...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2012
Hauptverfasser: Лопушанська, Г.П., Лопушанський, А.О.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Український математичний журнал 2012
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/164435
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Задача Коші для рівнянь з дробовими похідними за часовою та просторовими змінними у просторах узагальнених функцій / Г.П. Лопушанська, А.О. Лопушанський // Український математичний журнал. — 2012. — Т. 64, № 8. — С. 1067-1079. — Бібліогр.: 17 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine