Щільність множини задач Коші з неєдиними розв'язками у множині всіх задач Коші
Доказана следующая теорема. Пусть E — произвольное банахово пространство, G — открытое множество в прост- ранстве R×E и f:G→E — произвольное непрерывное отображение. Тогда для произвольных точки (t0,x0)∈G и числа ε>0 существует такое непрерывное отображение g:G→E, что имеет более чем одно решение...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2012 |
| Main Author: | |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Український математичний журнал
2012
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/164455 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Щільність множини задач Коші з неєдиними розв'язками у множині всіх задач Коші / В.Ю. Слюсарчук // Український математичний журнал. — 2012. — Т. 64, № 7. — С. 1001-1006. — Бібліогр.: 18 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Доказана следующая теорема. Пусть E — произвольное банахово пространство, G — открытое множество в прост- ранстве R×E и f:G→E — произвольное непрерывное отображение. Тогда для произвольных точки (t0,x0)∈G и числа ε>0 существует такое непрерывное отображение g:G→E, что имеет более чем одно решение.
We prove the following theorem: Let E be an arbitrary Banach space, let G be an open set in the space R×E, and let f: G → E be an arbitrary continuous mapping. Then, for an arbitrary point (t 0, x 0) ∈ G and an arbitrary number ε > 0, there exists a continuous mapping g: G → E such that has more than one solution.
|
|---|---|
| ISSN: | 1027-3190 |