Несвободные колебания бесконечномерного осциллятора при импульсных возмущениях

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:2008
Автор: Власенко, Л.А.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2008
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/164478
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Несвободные колебания бесконечномерного осциллятора при импульсных возмущениях / Л.А. Власенко // Український математичний журнал. — 2008. — Т. 60, № 2. — С. 155–166. — Бібліогр.: 15 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-164478
record_format dspace
spelling Власенко, Л.А.
2020-02-09T16:13:22Z
2020-02-09T16:13:22Z
2008
Несвободные колебания бесконечномерного осциллятора при импульсных возмущениях / Л.А. Власенко // Український математичний журнал. — 2008. — Т. 60, № 2. — С. 155–166. — Бібліогр.: 15 назв. — рос.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/164478
517.9
ru
Інститут математики НАН України
Український математичний журнал
Статті
Несвободные колебания бесконечномерного осциллятора при импульсных возмущениях
Forced oscillations of an infinite-dimensional oscillator under impulsive perturbations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Несвободные колебания бесконечномерного осциллятора при импульсных возмущениях
spellingShingle Несвободные колебания бесконечномерного осциллятора при импульсных возмущениях
Власенко, Л.А.
Статті
title_short Несвободные колебания бесконечномерного осциллятора при импульсных возмущениях
title_full Несвободные колебания бесконечномерного осциллятора при импульсных возмущениях
title_fullStr Несвободные колебания бесконечномерного осциллятора при импульсных возмущениях
title_full_unstemmed Несвободные колебания бесконечномерного осциллятора при импульсных возмущениях
title_sort несвободные колебания бесконечномерного осциллятора при импульсных возмущениях
author Власенко, Л.А.
author_facet Власенко, Л.А.
topic Статті
topic_facet Статті
publishDate 2008
language Russian
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Forced oscillations of an infinite-dimensional oscillator under impulsive perturbations
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/164478
citation_txt Несвободные колебания бесконечномерного осциллятора при импульсных возмущениях / Л.А. Власенко // Український математичний журнал. — 2008. — Т. 60, № 2. — С. 155–166. — Бібліогр.: 15 назв. — рос.
work_keys_str_mv AT vlasenkola nesvobodnyekolebaniâbeskonečnomernogooscillâtorapriimpulʹsnyhvozmuŝeniâh
AT vlasenkola forcedoscillationsofaninfinitedimensionaloscillatorunderimpulsiveperturbations
first_indexed 2025-11-26T01:43:58Z
last_indexed 2025-11-26T01:43:58Z
_version_ 1850605813502050304
fulltext UDK 517.9 L. A. Vlasenko (Xar\kov. nac. un-t) NESVOBODNÁE KOLEBANYQ BESKONEÇNOMERNOHO OSCYLLQTORA PRY YMPUL|SNÁX VOZMUWENYQX Existence and uniqueness theorems for the impulsive differential operator equation d dt Au t 2 2 ( )[ ] + + Bu t( ) = f t u t, ( )( ) are obtained. The operator A is allowed to be noninvertible. The results are applied to differential algebraic equations and partial differential equations, which are not equations of Kovalevskaya type. OderΩano teoremy isnuvannq ta [dynosti dlq dyferencial\no-operatornoho rivnqnnq d dt Au t 2 2 ( )[ ] + Bu t( ) = f t u t, ( )( ) z impul\snym vplyvom. Operator A moΩe buty neoborotnym. Rezul\taty zastosovano do dyferencial\no-alhebra]çnyx rivnqn\ ta dyferencial\nyx rivnqn\ z çastynnymy poxidnymy ne typu Kovalevs\ko]. 1. Vvedenye. Rqd zadaç fyzyky y texnyky pryvodyt k yzuçenyg uravnenyq os- cyllqtora ˙̇u + ω2u = 0 s ympul\sn¥my vozdejstvyqmy. Takye uravnenyq ys- sledovan¥ v [1, 2]. Esly kolebanyq ne svobodn¥e, to v pravoj çasty soderΩytsq nekotoraq funkcyq, voobwe hovorq, nelynejno zavysqwaq ot u. Matematyçes- kye modely rezonansn¥x πlektryçeskyx cepej [3] v¥z¥vagt ynteres k bolee ßyrokym klassam dyfferencyal\n¥x uravnenyj, a ymenno, uravnenyj, ne raz- reßenn¥x otnosytel\no starßej proyzvodnoj. Process¥ v systemax s raspre- delenn¥my parametramy, mhnovenno menqgwye svoe sostoqnye v opredelenn¥e moment¥ vremeny, opys¥vagtsq ympul\sn¥my uravnenyqmy s çastn¥my proyz- vodn¥my. V obwem sluçae πty uravnenyq qvlqgtsq ne razreßenn¥my otnosy- tel\no starßej proyzvodnoj po vremeny, t.8e. uravnenyqmy ne typa Kovalevskoj yly typa Soboleva [4]. V abstraktnoj forme uravnenyq ne typa Kovalevskoj zapys¥vagtsq v vyde neqvnoho dyfferencyal\no-operatornoho uravnenyq, u kotoroho proyzvodn¥e po prostranstvenn¥m peremenn¥m zamenqgtsq dyffe- rencyal\n¥my operatoramy. V dannoj rabote budem rassmatryvat\ polulynejnoe dyfferencyal\no-ope- ratornoe uravnenye d dt Au t 2 2 ( )[ ] + Bu t( ) = f t u t, ( )( ) dlq poçty vsex t0 ≤ t ≤ t0 + τ0 (1) s ympul\sn¥my vozdejstvyqmy ∆k Au t( )[ ] = � k k kAu t Au t0 0 0( )( – ), ( ) ( – )′( ), (2) ∆k Au t( ) ( )′[ ] = � k k kAu t Au t1 0 0( )( – ), ( ) ( – )′( ), k m= …1, , , © L. A. VLASENKO, 2008 ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 2 155 156 L. A. VLASENKO y naçal\n¥my uslovyqmy ( )( )Au t0 = y0, ( ) ( )Au t′ 0 = y1. (3) Zdes\ ∆k tv( )[ ] = v( )tk + 0 – v( – )tk 0 ; (4) zamknut¥e lynejn¥e operator¥ A, B dejstvugt yz kompleksnoho banaxova prostranstva X v kompleksnoe banaxovo prostranstvo Y y ymegt oblasty op- redelenyq DA, DB sootvetstvenno; f t( , )v — funkcyq yz t t0 0 0, +[ ]τ × X v Y ; � k j ( , )v ω — funkcyy yz Ωk 1 × Ωk 2 v Y ( AD DA B∩ � Ω Ωk k 1 2, � Y); moment¥ vremeny tk zanumerovan¥ tak: t0 < t1 < … < tm < tm +1 = t0 + τ0. Uravnenye (1) ne qvlqetsq poln¥m, tak kak ne soderΩyt çlena s pervoj proyzvodnoj. Voobwe hovorq, uravnenye (1) nel\zq razreßyt\ otnosytel\no proyzvodnoj v sylu v¥roΩdennosty operatora A (nalyçyq netryvyal\noho qdra). K yssledovanyg v¥roΩdenn¥x uravnenyj neposredstvenno neprymenyma teoryq kosynus-opera- tor-funkcyj, kak πto delaetsq dlq qvn¥x uravnenyj s edynyçn¥m operatorom A = E [5]. Neqvn¥e, a takΩe v¥roΩdenn¥e uravnenyq (1) voznykagt, naprymer, v πvolgcyonnoj πlektrodynamyke [6]. V ympul\sn¥x vozdejstvyqx (2) y na- çal\n¥x uslovyqx (3) soderΩytsq operator A v otlyçye ot sootvetstvugwyx uslovyj dlq ympul\sn¥x v¥roΩdenn¥x uravnenyj yz [7] (podrazdel¥ 6.1, 6.2). Sm¥sl uslovyj (2), (3) m¥ poqsnym pozΩe. Zdes\ tol\ko zametym, çto dlq qvno- ho uravnenyq s edynyçn¥m operatorom A = E πty uslovyq sohlasovan¥ s obwy- my poloΩenyqmy teoryy system s tolçkamy [8]. Budem yspol\zovat\ sledugwye oboznaçenyq: L( , )Y X — prostranstvo oh- ranyçenn¥x lynejn¥x operatorov yz Y v X , L( , )Y Y = L( )Y ; L t t1 0 0( , + + τ0; )Y 8— prostranstvo Y -znaçn¥x funkcyj, yntehryruem¥x na t t0 0 0, +[ ]τ ; W t tm 1 0 0( , + τ0; )Y — prostranstvo Soboleva funkcyj yz L t t Y1 0 0 0( , ; )+ τ , u kotor¥x obobwenn¥e proyzvodn¥e do porqdka m vklgçytel\no prynadleΩat L t t1 0 0( , + τ0; )Y ; C I Xp( , ) , p = 0, 1, … , — klass X-znaçn¥x funkcyj, p raz neprer¥vno dyfferencyruem¥x na I ⊂ R , C I X( , ) = C I X0( , ) . 2. RazloΩenyq prostranstv. S uravnenyem (1) svqzan puçok operatorov λA + B, kotor¥j opredelen na D = DA ∩ DB ≠ 0{ }. V dal\nejßem budem pred- polahat\, çto v nekotoroj okrestnosty beskoneçno udalennoj toçky ( )λ > C2 puçok operatorov λA + B ymeet rezol\ventu ( )λA B+ −1 ∈ L( , )Y X y pry neko- torom celom r ≥ 0 v¥polnena ocenka ( )λA B+ −1 ≤ C r 1 λ , λ > C2. (5) V sluçae ocenky (5) v lemmax82.1, 2.2 yz [7] utoçnqetsq vozmoΩnost\ pryme- nenyq metoda spektral\n¥x proektorov typa Ryssa [9]. Spravedlyv¥ prqm¥e razloΩenyq lyneala D = D1 +̇ D2 y prostranstva Y = Y1 +̇ Y2 takye, çto D2 est\ lyneal sobstvenn¥x y prysoedynenn¥x vektorov puçka µB + A v toçke µ = = 0, Y2 = BD2, Y1 = AD1, Ker A ∩ D1 = 0{ }, Ker B ∩ D2 = 0{ }, operator¥ A, B otobraΩagt Dj v Yj, j = 1, 2. Pust\ P1, P2 y Q1, Q 2 — par¥ vzaymno dopol- nytel\n¥x proektorov na D1, D2 y Y1, Y2 sootvetstvenno. Zamknut¥j lynej- n¥j operator G = AP1 + B P2 = Q A1 + Q2B : D → Y, DG = D, ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 2 NESVOBODNÁE KOLEBANYQ BESKONEÇNOMERNOHO OSCYLLQTORA … 157 otobraΩaet Dj v Yj, ymeet ohranyçenn¥j obratn¥j G Y X– ( , )1 ∈L , xaraktery- zugwyjsq sledugwymy svojstvamy: G AP−1 1 = P1, G BP−1 2 = P2, AG Q−1 1 = Q1, BG Q−1 2 = Q2, (6) ( )F r +1 = 0, F = AG Q−1 2 . 3. Razreßymost\ abstraktnoho uravnenyq bez ympul\sn¥x vozdejstvyj. Budem predpolahat\, çto f t( , )v , kak funkcyq ot t, pry kaΩdom v ∈ X pry- nadleΩyt klassu L t t1 0 0( , + τ0; )Y . Reßenyem naçal\noj zadaçy (1), (3) naz¥va- etsq funkcyq u t( ) ∈ L t t1 0 0( , + τ0; )X takaq, çto Au t( ) ∈ W t t1 2 0 0( , + τ0; )Y , funkcyq u t( ) poçty vsgdu udovletvorqet uravnenyg (1) y v¥polnen¥ naçal\- n¥e uslovyq (3). Yz opredelenyq reßenyq u t( ) sleduet, çto u t D( ) ∈ pry poçty vsex t ∈ t t0 0 0, +[ ]τ . Dlq reßenyq yz klassa L t t1 0 0( , + τ0; )X , m¥, voob- we hovorq, ne moΩem rassmatryvat\ naçal\n¥e uslovyq vyda u t( )0 = u0, ′u t( )0 = u1. (7) Naçal\n¥e uslovyq (3) ymegt sm¥sl, poskol\ku funkcyq Au t( ) ∈ W t t1 2 0 0( , + + τ0; )Y qvlqetsq neprer¥vno dyfferencyruemoj na t t0 0 0, +[ ]τ , t. e. Au t( ) ∈ ∈ C t1 0[( , t0 + τ0], Y ), posle vozmoΩnoho yzmenenyq na mnoΩestve mer¥ nul\. Dlq qvnoho uravnenyq s edynyçn¥m operatorom A = E, sohlasno pryvedennomu v¥ße opredelenyg reßenyq, naçal\n¥e uslovyq prynymagt vyd (7), çto sovpa- daet s yzvestn¥my postanovkamy naçal\n¥x zadaç v sluçae reßenyj, prynadle- Ωawyx prostranstvu Soboleva vtoroho porqdka [10] (hl. 3, razdel 8). Naçal\- n¥e uslovyq na funkcyg Au t( ) dlq psevdoparabolyçeskyx dyfferencyal\- n¥x uravnenyj, razreßym¥x otnosytel\no proyzvodnoj, takΩe yspol\zovalys\ v8[11]. V prostranstve Y rassmotrym vspomohatel\noe uravnenye ′′v ( )t = W tv( ) + ϕ( )t dlq poçty vsex t0 ≤ t ≤ t0 + τ0, W = − −Q BG1 1, (8) s yntehryruemoj po Boxneru na t t0 0 0, +[ ]τ vektor-funkcyej ϕ( )t . Pust\ C t( ), S t( ) — kosynus- y synus-operator-funkcyy (razreßagwye operator¥) uravnenyq (8), kotor¥e opredelqgtsq sledugwymy rqdamy, ravnomerno sxodq- wymysq po operatornoj norme na kaΩdom kompaktnom otrezke yz – ∞ < t < ∞ [5] (hl.82): C t( ) = ch W t1 2( ) = W t j j j j 2 0 2( )!= ∞ ∑ , S t( ) = W W t− ( )1 2 1 2sh = W t j j j j 2 1 0 2 1 + = ∞ +∑ ( )! . (9) Suwestvugt poloΩytel\n¥e postoqnn¥e C0 0> , ω0 0> takye, çto C t( ) ≤ C e t 0 0ω , S t( ) ≤ C e t 0 0ω . (10) Pryvedem nekotor¥e svojstva operator-funkcyj C t( ), S t( ) [5]: S t( ) = C s ds t ( ) 0 ∫ , ′C t( ) = WS t( ) , ′S t( ) = C t( ), C( )0 = E, S( )0 = 0, C t( ) = C t( )− , S t( ) = – S t( )− , (11) 2C s S t( ) ( ) = 2S t C s( ) ( ) = S t s( )+ 8+8 S t s( – ) , ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 2 158 L. A. VLASENKO 2C t C s( ) ( ) = C t s( )+ + C t s( – ) , 2WS t S s( ) ( ) = C t s( )+ – C t s( – ) . Lgboe reßenye v( )t uravnenyq (8) dopuskaet predstavlenye v vyde v( )t = C t t t( – ) ( )0 0v + S t t t( – ) ( )0 0′v + + S t s s ds t t ( – ) ( ) 0 ∫ ϕ dlq poçty vsex t0 ≤ t ≤ t0 + τ0. (12) Zameçanye 1. Yz predstavlenyq (12), v¥raΩenyj (9) dlq C t( ), S t( ) y opre- delenyq operatora W v (8) vydno, çto esly v naçal\n¥j moment vremeny t0 ymegt mesto vklgçenyq v( )t0 , ′v ( )t0 ∈ Y1, a takΩe dlq poçty vsex t ∈ t0[ , t0 + + τ0] pravaq çast\ ϕ( )t leΩyt v Y1, to y reßenye v( )t leΩyt v Y1 dlq poçty vsex t ∈ t t0 0 0, +[ ]τ . Teorema 1. Pust\ v¥polneno ohranyçenye (5); funkcyq f t( , )v : t0[ , t0 + + τ0] × X → Y po arhumentu t prynadleΩyt prostranstvu L t1 0( , t0 + τ0; Y ) pry kaΩdom v ∈ X , a po arhumentu v udovletvorqet uslovyg Lypßyca f t f t w( , ) – ( , )v ≤ M wv – ∀v , w X∈ y poçty vsex t0 ≤ t ≤ t0 + τ0, (13) s konstantoj M, ne zavysqwej ot t y takoj, çto M G Q–1 2 < 1; (14) funkcyq Ff t( , )v = h t( ) ne zavysyt ot v y F jh t( ) ∈ W t t Yj 1 2 1 0 0 0 + +( , : )τ , j = = 0, … , r. Tohda dlq lgb¥x naçal\n¥x vektorov y0, y1 v (3) takyx, çto Q y2 0 = (– ) ( )1 2 2 0 0 j j j j t t j r d dt F h t[ ] = = ∑ , Q y2 1 = (– ) ( )1 2 1 2 1 0 0 j j j j t t j r d dt F h t + + = = [ ]∑ , (15) suwestvuet edynstvennoe reßenye u t( ) naçal\noj zadaçy (1), (3). Razreßy- most\ zadaçy (1), (3) πkvyvalentna razreßymosty yntehral\noho uravnenyq u t( ) = Φ( )( )u t ≡ G C t t Q y S t t Q y S t s Q f s u s ds t t – ( – ) ( – ) ( – ) , ( )1 0 1 0 0 1 1 1 0 + + ( )        ∫ + + G d dt F Q f t u tj j r j j j− = ∑ ( )[ ]1 0 2 2 21(– ) , ( ) dlq poçty vsex t0 ≤ t ≤ t0 + τ0. (16) Pry proçyx uslovyqx teorem¥ sootnoßenyq (15) qvlqgtsq neobxodym¥my dlq razreßymosty naçal\noj zadaçy (1), (3). Zameçanye 2. Yz svojstva (13) sleduet, çto funkcyq t → f t u t, ( )( ) qvlqet- sq πlementom prostranstva L t t1 0 0( , + τ0; )Y , esly u t( ) ∈ L t t1 0 0( , + τ0; )X . Zameçanye 3. Esly ocenka (5) v¥polnqetsq pry r = 0, to operator F v (6) tryvyalen: F = 0. Poπtomu funkcyq Ff t( , )v = 0 ne zavysyt ot v, a uslovyq sohlasovanyq (15) na naçal\n¥e vektor¥ y0, y1 prynymagt vyd Q y2 0 = 0, Q y2 1 = 0. V πtom sluçae sootnoßenye (16) s uçetom F 0 = 00 = E prynymaet vyd u t( ) = G C t t y S t t y S t s Q f s u s ds Q f t u t t t – ( – ) ( – ) ( – ) , ( ) , ( )1 0 0 0 1 1 2 0 + + ( ) + ( )        ∫ . ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 2 NESVOBODNÁE KOLEBANYQ BESKONEÇNOMERNOHO OSCYLLQTORA … 159 Dokazatel\stvo teorem¥ 1. Prymenenye proektorov Q1, Q 2 k levoj y pravoj çastqm uravnenyq (1) pryvodyt k πkvyvalentnoj systeme uravnenyj d dt Q Au t 2 2 1 ( )[ ] = W Q Au t1 ( )[ ] + Q f t u t1 , ( )( ) , (17) d dt FQ Bu t 2 2 2 ( )[ ] + Q Bu t2 ( ) = Q f t u t2 , ( )( ). (18) Yspol\zuq formulu (12) dlq predstavlenyq reßenyq neodnorodnoho uravnenyq (8), uravnenye (17) s naçal\n¥my uslovyqmy (3) perepyßem v πkvyvalentnoj forme Q Au t1 ( ) = C t t Q y( – )0 1 0 + S t t Q y( – )0 1 1 + S t s Q f s u s ds t t ( – ) , ( )1 0 ( )∫ . (19) Poskol\ku r — yndeks nyl\potentnosty operatora F (6), uravnenye (18) preobrazuetsq v uravnenye Q Bu t2 ( ) = (– ) , ( )1 0 2 2 2 j j r j j jd dt F Q f t u t = ∑ ( )[ ]. (20) Otsgda sleduet neobxodymost\ ohranyçenyj (15) na naçal\n¥e dann¥e (3). Takym obrazom, uravnenye (1) πkvyvalentno systeme uravnenyj (19), (20). Sledovatel\no, pry sdelann¥x predpoloΩenyqx funkcyq u t( ) ∈ L t t1 0 0( , + τ0; X ) qvlqetsq reßenyem naçal\noj zadaçy (1), (3), esly y tol\ko esly ona udov- letvorqet uravnenyg (16). V prostranstve L t t1 0 0( , + τ1; )X , hde çyslo τ τ1 00∈( ], budet opredeleno nyΩe, rassmotrym otobraΩenye Φ, opredelennoe na funkcyqx u t( ) po formu- le (16). PokaΩem, çto pry podxodqwem v¥bore τ τ1 00∈( ], otobraΩenye Φ bu- det sΩymagwym. S pomow\g neravenstv (10), (13) ocenyvaem normu Φ Φ( ) – ( )u Lv 1 ≤ MC G Q e ds M G Q us L0 1 1 1 2 0 0 1 1 − ⋅ +         ∫ ω τ – – v . Sootnoßenye (14) pozvolqet v¥brat\ çyslo τ1 ∈ 0 0, τ( ] tak, çtob¥ otobraΩe- nye Φ b¥lo sΩymagwym MC G Q e0 1 1 0 1 1– –⋅ ( )ω τ < 1 1 2 0– –M G Q( )ω . Poπtomu suwestvuet edynstvennaq nepodvyΩnaq toçka u ∈ L t t1 0 0( , + τ1; )X , kotoraq qvlqetsq reßenyem uravnenyq (16), a potomu y zadaçy (1), (3) na t0[ , t0 8+ τ1]. Esly τ1 < τ0, to, rassuΩdaq, kak y v¥ße, m¥ prodolΩym reßenye u t( ) na t0 1+[ τ , t0 1 02+ { }]min ,τ τ . Ponqtno, çto za koneçnoe çyslo ßahov m¥ odno- znaçno prodolΩym reßenye na ves\ otrezok t t0 0 0, +[ ]τ . Teorema dokazana. Zameçanye 4. Yz dokazatel\stva teorem¥81 vydno, çto uslovye (14) moΩno zamenyt\ na uslovye M̃ < 1, hde M̃ qvlqetsq konstantoj Lypßyca funkcyy G Q f t– ( , )1 2 v : G Q f t– ( , )1 2 v – G Q f t w– ( , )1 2 ≤ ˜ –M wv . 4. Razreßymost\ uravnenyq s ympul\sn¥my vozdejstvyqmy. Reßenyem naçal\noj zadaçy (1), (3) s ympul\sn¥my vozdejstvyqmy (2) na otrezke t0[ , t0 8+ τ0] naz¥vaetsq funkcyq u t( ) ∈ L t1 0( , t0 + τ0; X ) takaq, çto Au t( ) ∈ ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 2 160 L. A. VLASENKO ∈ W t t Yk k1 2 1, ;+( ) , k = 0, 1, … , m, funkcyq u t( ) udovletvorqet uravnenyg (1) dlq poçty vsex t ∈ t t0 0 0, +[ ]τ , ympul\sn¥m vozdejstvyqm (2) y naçal\n¥m us- lovyqm (3). Yz opredelenyq reßenyq sleduet, çto posle vozmoΩnoho yzmenenyq na mnoΩestve mer¥ nul\ funkcyq Au t( ) neprer¥vno dyfferencyruema pry t ≠ t1, … , tm. V toçkax t ≠ t1, … , tm funkcyq Au t( ) y ee proyzvodnaq Au t( )′ ( ) ymegt skaçky. Poπtomu ympul\sn¥e vozdejstvyq (2) ymegt sm¥sl. Pry yssle- dovanyy neqvnoho uravnenyq v klasse yntehryruem¥x funkcyj m¥, voobwe ho- vorq, ne moΩem rassmatryvat\ operacyy ∆k (4) nad reßenyqmy v otlyçye ot qvnoho uravnenyq s edynyçn¥m operatorom A = E, kak, naprymer, v [12], y ot yssledovanyq neqvn¥x uravnenyj v klase kusoçno-neprer¥vn¥x funkcyj [7] (podrazdel¥ 6.2, 6.3). Teorema 2. Pust\ v¥polneno ohranyçenye (5); funkcyq f t( , )v : t0[ , t0 8+ + τ0] × X → Y po arhumentu t prynadleΩyt prostranstvu L t t Y1 0 0 0( , ; )+ τ pry kaΩdom v ∈ X , a po arhumentu v udovletvorqet uslovyg Lypßyca (13) s konstantoj M, ne zavysqwej ot t y udovletvorqgwej neravenstvu (14); funkcyq Ff t( , )v = h t( ) ne zavysyt ot v y F h tj ( ) ∈ W t t Yj 1 2 1 0 0 0 + +( , ; )τ , j = = 0, … , r ; naçal\n¥e vektor¥ y0, y1 v (3) udovletvorqgt ohranyçenyg (15); dlq ympul\sn¥x vozdejstvyj � k i w( , )v : Ωk 1 × Ωk 2 → Y v (2) v¥polnen¥ soot- noßenyq Q wk i 2� ( , )v = 0, k = 1, 2, … , m, i = 0, 1, v ∈Ωk 1 , w k∈Ω2 . (21) Tohda suwestvuet edynstvennoe reßenye zadaçy (1) – (3) na otrezke t0[ , t0 8+ τ0], y πto reßenye udovletvorqet uravnenyg u t( ) = G C t t Q y S t t Q y S t s Q f s u s ds t t – ( – ) ( – ) ( – ) , ( )1 0 1 0 0 1 1 1 0 + + ( )        ∫ + + G d dt F Q f t u tj j j j j r – – , ( )1 2 2 2 0 1( ) ( )[ ] = ∑ + + G C t t Au t Au tk k k k t t tk – ( – ) ( )( – ), ( ) ( – )1 0 0 0 0 � ′( ) < < ∑ + + G S t t Au t Au tk k k k t t tk – ( – ) ( )( – ), ( ) ( – )1 1 0 0 0 � ′( ) < < ∑ (22) dlq poçty vsex t0 ≤ t ≤ t0 + τ0. Dokazatel\stvo. Pust\ u tk ( ) — reßenye uravnenyq (1) na otrezke [tk , tk +1] s naçal\n¥my uslovyqmy Au tk k( )( ) = yk 0 , Au tk k( )′ ( ) = yk 1, k = 0, 1, … , m, hde y yi i0 = , yk i = Au tk i k– ( ) ( )1( ) + � k i k k k kAu t Au t( )( ), ( ) ( )– –1 1 ′( ), (23) k = 1, 2, … , m, i = 0, 1. PokaΩem, çto v¥polnen¥ sootnoßenyq ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 2 NESVOBODNÁE KOLEBANYQ BESKONEÇNOMERNOHO OSCYLLQTORA … 161 Q yk i 2 = −( ) [ ] + + = =∑ 1 2 2 0 j j i j i j r j t t d dt F h t k ( ) , i = 0, 1. (24) Tohda v sylu teorem¥81 suwestvuet edynstvennoe reßenye u tk ( ), kotoroe udov- letvorqet yntehral\nomu uravnenyg u tk ( ) = G C t t Q y S t t Q y S t s Q f s u s dsk k k k k t t k – ( – ) ( – ) ( – ) , ( )1 1 0 1 1 1+ + ( )        ∫ + + G d dt F Q f t u tj j j j r j k – , ( )1 2 2 0 21−( ) ( )[ ] = ∑ dlq poçty vsex t t tk k≤ ≤ +1. (25) Poskol\ku v¥polnen¥ ohranyçenyq (15), sootnoßenyq (24) spravedlyv¥ pry k = 0. Sledovatel\no, suwestvuet edynstvennoe reßenye u t0( ). Yz (25) pry k = 0 poluçaem Q Au ti 2 0 1( )( )( ) = −( ) [ ] + + = =∑ 1 2 2 0 1 j j i j i j r j t t d dt F h t( ) , i = 0, 1. Otsgda, a takΩe yz predpoloΩenyj (21) y opredelenyj (23) pry k = 1 sleduet spravedlyvost\ ravenstv (24) pry k = 1. Tohda suwestvuet edynstvennoe reße- nye u t1( ) , kotoroe udovletvorqet yntehral\nomu uravnenyg (25) pry k = 1. RassuΩdaq analohyçn¥m obrazom, posledovatel\no odnoznaçno naxodym reße- nyq u t2( ), … , u tm( ) y ubeΩdaemsq, çto ony qvlqgtsq reßenyqmy yntehral\n¥x uravnenyj (25) sootvetstvenno pry k = 2, … , m. Reßenye u t( ) zadaçy (1) – (3) sovpadaet s u tk ( ) poçty vsgdu na t tk k, +[ ]1 , k = 0, 1, … , m. Ubedymsq v spravedlyvosty formul¥ (22). Yz (23), (25) pry k = 0 poluçaem, çto u t( ) udovletvorqet uravnenyg (22) pry poçty vsex t0 ≤ t ≤ t1. S pomow\g (22) naxodym y1 0 , y1 1 . Ymeem Q y1 1 0 = C t t Q y( – )1 0 1 0 + S t t Q y( – )1 0 1 1 + S t s Q f s u s ds t t ( – ) , ( )1 1 0 1 ( )∫ + + �1 0 1 10 0( )( – ), ( ) ( – )Au t Au t′( ), (26) Q y1 1 1 = WS t t Q y( – )1 0 1 0 + C t t Q y( – )1 0 1 1 + C t s Q f s u s ds t t ( – ) , ( )1 1 0 1 ( )∫ + + �1 1 1 10 0( )( – ), ( ) ( – )Au t Au t′( ) . Yz (23), (25) pry k = 1 s yspol\zovanyem predstavlenyj (26) y svojstv kosynus- y synus-operator-funkcyj C t( ) y S t( ) (11) ustanavlyvaem, çto funkcyq u t( ) udovletvorqet uravnenyg (22) pry poçty vsex t1 ≤ t ≤ t2. Provodq analohyçn¥e rassuΩdenyq posledovatel\no dlq otrezkov [ , ]t t2 3 , … , [ , ]t tm m +1 , poluçaem trebuem¥j rezul\tat. Teorema dokazana. Zameçanye 5. Ohranyçenyq na funkcyy � k i w( , )v (21) qvlqgtsq ne tol\ko dostatoçn¥my dlq razreßymosty zadaçy (1) – (3), no y neobxodym¥my pry v = = ( )( – )Au tk 0 , w = ( ) ( – )Au tk′ 0 . Ohranyçenyq (21) xaraktern¥ tol\ko dlq v¥- roΩdennoho uravnenyq s ympul\sn¥m vozdejstvyem, kohda Q2 ≠ 0. ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 2 162 L. A. VLASENKO Dejstvytel\no, reßenye u t( ) pry poçty vsex t t tk k≤ ≤ +1, k = 1, … , m, udovletvorqet uravnenyg (1) y naçal\n¥m uslovyqm ( ) ( )( )Au ti k + 0 = ( ) ( – )( )Au ti k 0 + � k i k kAu t Au t( )( – ), ( ) ( – )0 0′( ), i = 1, 2. (27) Prymenqq teoremu81 na otrezkax [ , ]t tk k +1 , poluçaem neobxodym¥e ohranyçenyq na reßenye u t( ) zadaçy (1) – (3): Q Au ti k2 0( ) ( )( ) + = Q Au ti k2 0( ) ( – )( ) = −( ) [ ] + + = =∑ 1 2 2 0 j j i j i j r j t t d dt F h t k ( ) . Otsgda y yz (27) sleduet trebuem¥j rezul\tat. Pry yssledovanyy zadaçy (1) – (3) v vewestvenn¥x prostranstvax X, Y sle- duet perejty k kompleksn¥m oboloçkam prostranstv X, Y y kompleksn¥m ras- ßyrenyqm operatorov A, B, kak, naprymer, v [13]. 5. PryloΩenyq. Rassmotrym pryloΩenyq poluçenn¥x rezul\tatov k urav- nenyqm v koneçnomern¥x prostranstvax — dyfferencyal\no-alhebrayçeskym y k uravnenyqm v çastn¥x proyzvodn¥x, ne razreßenn¥m otnosytel\no starßej proyzvodnoj po vremeny, — ne typa Kovalevskoj. 5.1. PryloΩenye k ympul\sn¥m dyfferencyal\no-alhebrayçeskym urav- nenyqm. Dyfferencyal\no-alhebrayçeskye yly v¥roΩdenn¥e uravnenyq v koneçnomernom prostranstve v poslednee vremq qvlqgtsq oblast\g yntensyv- noho yssledovanyq (sm. monohrafyg [14], hde pryveden obzor sootvetstvugwyx rezul\tatov). Zdes\ m¥ rassmotrym systemu dyfferencyal\n¥x uravnenyj ′′u t2( ) + u t1( ) = f t u t u t1 1 2, ( ), ( )( ) , ′′u t2( ) + u t2( ) = f t u t u t2 1 2, ( ), ( )( ) (28) dlq poçty vsex t t tm0 1≤ ≤ + s ympul\sn¥my vozdejstvyqmy ∆k u t2( )[ ] = u tk2 0( )+ – u tk2 0( – ) = d u t u tk k k2 20 0( – ), ( – )′( ), (29) ∆k u t′[ ]2( ) = ′ +u tk2 0( ) – ′u tk2 0( – ) = e u t u tk k k2 20 0( – ), ( – )′( ) , k = 1, … , m, y naçal\n¥my uslovyqmy u t2 0( ) = a, ′u t2 0( ) = b. (30) Funkcyy f t x yi( , , ) ; [ , ]t tm0 1+ × C × C → C, i = 1, 2, pry fyksyrovann¥x x, y ∈ ∈ C qvlqgtsq πlementamy kompleksnoho prostranstva L t tm1 0 1( , )+ y dlq poç- ty vsex t t tm0 1≤ ≤ + udovletvorqgt uslovyqm Lypßyca f t x y f t x yi i( , , ) – ( , , )1 1 2 2 ≤ M x x y yi 1 2 2 1 2 2– –+ , i = 1, 2, ∀ ∈x y x y1 1 2 2, , , C , s konstantamy Mi , ne zavysqwymy ot t; funkcyy d x yk ( , ) , e x yk ( , ) , k = = 1, … , m, dejstvugt yz C 2 v C. V prostranstve C 2 zadaça (28) – (30) zapy- s¥vaetsq v abstraktnoj forme (1) – (3): A = 0 1 0 1     , B = 1 0 0 1     , f t( , )v = f t f t 1 1 2 2 1 2 ( , , ) ( , , ) v v v v     , y0 = a a     , y1 = b b     , � k w0 ( , )v = d t w d t w k k ( , , ) ( , , ) v v 2 2 2 2     , � k w1 ( , )v = e t w e t w k k ( , , ) ( , , ) v v 2 2 2 2     . ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 2 NESVOBODNÁE KOLEBANYQ BESKONEÇNOMERNOHO OSCYLLQTORA … 163 Reßenye u t1( ) , u t2( ) zadaçy (28) – (30) ponymaem v sm¥sle reßenyq abstrakt- noj zadaçy (1) – (3): u t1( ) , u t2( ) ∈ L t tm1 0 1( , )+ ; u t2( ) ∈8 W t tk k1 2 1( , )+ , k = 0, 1, … m; funkcyy u t1( ) , u t2( ) udovletvorqgt uravnenyg (28) dlq poçty vsex t t tm0 1≤ ≤ + ; funkcyq u t2( ) udovletvorqet ympul\sn¥m vozdejstvyqm (29) y naçal\n¥m uslovyqm (30). Uslovye (5) v¥polneno s r = 0. Naxodym D1 = Y1 = Lin 1 1           , D2 = Y2 = Lin 1 0           , Q1 = P1 = A, Q2 = P2 = 1 1 0 0 –    , G = G–1 = 1 0 0 1     , W = – A, C t( ) = 1 1 0 cos – cos t t     , S t( ) = t t t t sin – sin0     . PredpoloΩym, çto M1 + M2 < 1. S uçetom zameçanyq 4 uslovyq teorem¥82 v¥- polnen¥. Poπtomu zadaça (28) – (30) ymeet edynstvennoe reßenye u t1( ) , u t2( ), pry πtom u t2( ) = a t tcos ( – )0 8+8 b t tsin ( – )0 8+8 sin ( – ) , ( ), ( )t s f s u s u s ds t t 2 1 2 0 ( )∫ + + cos ( – ) ( – ), ( – ) sin ( – ) ( – ), ( – )t t d u t u t t t e u t u tk k k k k k k k t t tk 2 2 2 20 0 0 0 0 ′( ) + ′( )[ ] < < ∑ , u t1( ) = u t2( ) 8+8 f t u t u t1 1 2, ( ), ( )( ) 8–8 f t u t u t2 1 2, ( ), ( )( ). 5.2. PryloΩenyq k dyfferencyal\n¥m uravnenyqm v çastn¥x proyzvod- n¥x ne typa Kovalevskoj s ympul\sn¥my vozdejstvyqmy. Pry yssledova- nyy πvolgcyonn¥x reΩymov πlektromahnytnoho polq v cylyndryçeskom volno- vode s dyspersnoj sredoj [6] voznykaet odnorodnoe uravnenye ne typa Kova- levskoj. Zdes\ m¥ yssleduem nelynejnoe vozmuwenye πtoho uravnenyq ε ∂ ∂ ∂ ∂ 2 2 2 2 2t u t x x u t x ( , ) ( , )+    + – ( , ) ( , ) ∂ ∂ 2 2 2u t x x k u t x+    = = g t x u t x, , ( , )( ) dlq poçty vsex t t tm0 1≤ ≤ + , 0 ≤ x ≤ π, (31) hde ε2 , k2 — poloΩytel\n¥e postoqnn¥e, g t x z( , , ) — funkcyq yz t0[ , tm + ]1 × × 0, π[ ] × C v C. Oboznaçym l u0[ ] = l u t x0[ ]( )( , ) = ∂ ∂ 2 2 u t x x u t x ( , ) ( , )+    , l u1[ ] = l u t x1[ ]( )( , ) = ∂ ∂ ∂ ∂t u t x x u t x 2 2 ( , ) ( , )+    . Lgbug funkcyg u : t, x → u t x( , ) budem takΩe rassmatryvat\ kak funkcyg ot t so znaçenyqmy v prostranstve funkcyj ot x y zapys¥vat\ kak u t x( )( ). Dlq uravnenyq (31) rassmatryvaem kraev¥e uslovyq u t( , )0 = u t( , )π = 0 dlq poçty vsex t t tm0 1≤ ≤ + , (32) naçal\n¥e uslovyq l u x0 0[ ]( )( , ) = y x0( ), l u x1 0[ ]( )( , ) = y x1( ) dlq poçty vsex 0 ≤ x ≤ π, (33) ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 2 164 L. A. VLASENKO y ympul\sn¥e vozdejstvyq ∆k il u x[ ]( )[ ]( , )0 = l u t xi k[ ]( ) +( , )0 – l u t xi k[ ]( )( – , )0 = = J x l u t x l u t xk i k i k, ( – , ), ( – , )0 0 0[ ]( ) [ ]( )( ) , k = 1, … , m, i = 0, 1, (34) dlq poçty vsex 0 ≤ x ≤ π, hde J x z zk i ( , , )1 2 — funkcyy yz 0, π[ ] × C × C v C. Budem predpolahat\, çto funkcyq g t x z( , , ) pry fyksyrovannom z prynadleΩyt klassu g t z x( , )( ) ∈ ∈8 L t1 0( , tm +1; L2 0( , )π ) , hde L2 0( , )π — prostranstvo yntehryruem¥x s kvadra- tom funkcyj; funkcyy J x z zk i ( , , )1 2 pry fyksyrovann¥x z1, z 2 prynymagt znaçenyq v L2 0( , )π . Pust\ v¥polnqgtsq uslovyq Lypßyca g t x z g t x z( , , ) – ( , , )1 2 ≤ M z z1 2– , (35) z1, z2 ∈C , dlq poçty vsex t t tm∈[ ]+0 1, , x ∈[ ]0, π , s konstantoj M, ne zavysqwej ot t, x, y J x z z J x z zk i k i( , , ) – ( , , )1 2 1 2′ ′ ≤ M z z z zk i 1 1 2 2– –′ + ′( ), (36) z1, ′z1, z2, ′ ∈z2 C , dlq poçty vsex x ∈[ ]0, π , s konstantamy Mk i , ne zavysqwymy ot x. Pry sdelann¥x predpoloΩenyqx funkcyq g : x → g t x x, , ( )v( ) pry poçty vsex fyksyrovann¥x t y funkcyy Jk i : x → J x x w xk i , ( ), ( )v( ) qvlqgtsq πlemen- tamy prostranstva L2 0( , )π , esly v( )x , w x( ) ∈ L2 0( , )π . V prostranstve X = = Y = L2 0( , )π smeßannaq zadaça (31) – (34) zapys¥vaetsq v abstraktnoj forme (1) – (3). Dyfferencyal\n¥e operator¥ A, B opredelqgtsq kak Av = ε2 2 2 d x dx xv v ( ) ( )+    , Bv = – ( ) ( )d x dx k x 2 2 2v v+    , D = DA = DB = � W2 2 0( , )π = v v v( ) ( , ), ( ) ( )x W∈ = ={ }2 2 0 0 0π π , hde W2 2 0( , )π — prostranstvo Soboleva porqdka 2 funkcyj yz L2 0( , )π . Pola- haem f t( , )v : t, v( )x → g t x x, , ( )v( ), � k i w( , )v : v( )x , w x( ) → J x x w xk i , ( ), ( )v( ) . Reßenye smeßannoj zadaçy (31) – (34) budem ponymat\ v sm¥sle reßenyq abs- traktnoj zadaçy (1) – (3). Dlq vsex λ ≠ λn 2 = n k n 2 2 2 2 1 + ε ( – ) , n = 2, 3, … , suwestvuet rezol\venta ( ) ( )–λ A B x+ 1v = vn n nx k n n sin ( – )2 2 2 2 1 1+ += ∞ ∑ λε , vn = 2 0 π π v( ) sinx nx dx∫ , dlq kotoroj v¥polnena ocenka (5) s r = 0. V dannom sluçae Y2 = D2 = Ker A = sin x{ }, Y1 = Ker A( )⊥ , D1 = Ker A( )⊥ ∩ D, P x2v( ) = Q x2v( ) = v1 sin x , P1 = Q1 = E – P2, G xv( ) = ε 2 ′′ +( )v v( ) ( )x x + 1 2 1+( )k xv sin , ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 2 NESVOBODNÁE KOLEBANYQ BESKONEÇNOMERNOHO OSCYLLQTORA … 165 G x– ( )1v = v1 21 + k xsin + n n n nx = ∞ ∑ 2 2 21 v ε ( – ) sin , W xv( ) = n n n nx = ∞ ∑ 2 2λ v sin , C t x( ) ( )v = n n n t nx = ∞ ∑ 2 v ch λ sin , S t x( ) ( )v = n n n n t nx = ∞ ∑ 2 v sh λ λ sin . V¥polnqetsq neravenstvo G Q f t x G Q f t w x L – –( , )( ) – ( , )( )1 2 1 2 2 v ≤ M k x w x L1 2 2+ v( ) – ( ) . Budem predpolahat\, çto M < 1 + k2 . (37) Pust\ dlq vsex i = 0, 1, k = 1, … , m, v( )x , w x L( ) ( , )∈ 2 0 π v¥polnqgtsq soot- noßenyq y x x dxi( ) sin 0 π ∫ = 0, J x x w x x dxk i , ( ), ( ) sinv( )∫ 0 π = 0. (38) S pomow\g zameçanyq 4 y teorem¥82 moΩno sformulyrovat\ sledugwyj re- zul\tat. UtverΩdenye. Pust\ znaçenyq g t z x( , )( ) , kak funkcyy ot t, pry fyksy- rovann¥x z prynadleΩat L t tm1 0 1, +( ; L2 0( , )π ) ; funkcyy J x z zk i ( , , )1 2 , k = = 1, … , m, i = 0, 1, pry fyksyrovann¥x z1, z2 prynymagt znaçenyq v L2 0( , )π ; spravedlyv¥ uslovyq Lypßyca (35), (36) s konstantamy M , Mk i , ne zavysq- wymy ot t, x, y neravenstvo (37); dlq vsex i = 0, 1, k = 1, … , m, v( )x , w x( ) ∈ ∈ L2 0( , )π v¥polnqgtsq sootnoßenyq (38). Tohda smeßannaq zadaça (31) – (34) ymeet edynstvennoe reßenye u t x( , ) takoe çto, u t x( )( ) ∈ L t tm1 0 1, +( ; L2 0( , )π ) , u t x( )( ) ∈ 8 � W2 2 0( , )π dlq poçty vsex t y l u t x0[ ]( )( ) ∈ W t tk k1 2 1, +( ; L2 0( , )π ) , k = 0, … , m. Pry poçty vsex t t tm0 1≤ ≤ + y 0 ≤ x ≤ π reßenye u t x( , ) udovletvorqet uravnenyg u t x( , ) = y n t t nxn n n 0 2 2 2 01ε λ ( – ) ( – ) sin = ch ∞ ∑ + + y n t t nxn nn n 1 2 2 2 01ε λ λ ( – ) ( – ) sin = sh ∞ ∑ + + g s u n t s nx dsn nn n t t ( , ) ( – ) ( – ) sin ε λ λ2 2 2 1 0 = sh ∞ ∑∫         + + g t u k x1 21 ( , ) sin + + J u n t t nxkn n n k t t tk 0 2 2 2 1 0 ( ) ( – ) ( – ) sin ε λ = ch ∞ < < ∑∑ + + J u n t t nxkn nn n k t t tk 1 2 2 2 1 0 ( ) ( – ) ( – ) sin ε λ λ = sh ∞ < < ∑∑ , hde ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 2 166 L. A. VLASENKO yin = 2 0 π π y x nx dxi( ) sin∫ , J ukn i ( ) = 2 0 00 1 0 π π J x l u t x l u t x nx dxk i k k, ( – , ), ( – , ) sin[ ] [ ]( )∫ , g t un( , ) = 2 0 π π g t x u t x nx dx, , ( , ) sin( )∫ , k = 1, … , m, i = 0, 1, n = 1, 2, … . V svqzy s yzuçenyem nestacyonarn¥x system y processov predstavlqet ynte- res yssledovanye uravnenyq (1) s nestacyonarn¥my operatoramy A t( ), B t( ) . Dlq yssledovanyq v¥roΩdennoho uravnenyq (1) v stat\e predloΩeno v¥polnyt\ specyal\n¥e razloΩenyq prostranstv X, Y (p. 2) y sootvetstvugwee πtym raz- loΩenyqm razbyenye uravnenyq na systemu dvux uravnenyj (17), (18). ∏tot metod dopuskaet rasprostranenye na sluçaj nestacyonarn¥x operatorov A t( ), B t( ) [15]. 1. Samojlenko A. M., StryΩak T. H. O dvyΩenyy oscyllqtora pod dejstvyem mhnovennoj sy- l¥8// Tr. sem. po mat. fyzyke y nelynejn¥m kolebanyqm. – Kyev, 1968. – V¥p. 4. – S. 213 – 218. 2. Samojlenko A. M., Perestgk N. A. Dyfferencyal\n¥e uravnenyq s ympul\sn¥m vozdejst- vyem. – Kyev: Vywa ßk., 1987. – 288 s. 3. Mytropol\skyj G. A., Molçanov A. A. Maßynn¥j analyz nelynejn¥x rezonansn¥x ce- pej.8– Kyev: Nauk. dumka, 1981. – 240 s. 4. Sobolev S. L. Zadaça Koßy dlq çastnoho sluçaq system, ne prynadleΩawyx typu Kova- levskoj // Dokl. AN SSSR. – 1952. – 82, # 2. – S. 205 – 208. 5. Fattorini H. O. Second order linear differential equations in Banach spaces // North-Holland Math. Stud. Notas Mat. – 1985. – 99. – 313 p. 6. Rutkas A., Vlasenko L. Implicit operator differential equations and applications to electrodyna- mics // Math. Meth. Appl. Sci. – 2000. – 23, # 1. – P. 1 – 15. 7. Vlasenko L. A. ∏volgcyonn¥e modely s neqvn¥my y v¥roΩdenn¥my dyfferencyal\n¥my uravnenyqmy. – Dnepropetrovsk: System. texnolohyy, 2006. – 273 s. 8. M¥ßkys A. D., Samojlenko A. M. System¥ s tolçkamy v zadann¥e moment¥ vremeny // Mat. sb. – 1967. – 74, # 2. – S. 202 – 208. 9. Rutkas A. H. Zadaça Koßy dlq uravnenyq Ax t′( ) + Bx t( ) = f t( ) // Dyfferenc. uravne- nyq.8– 1975. – 11, # 11. – S. 1996 – 2010. 10. Lyons Û.-L., MadΩenes ∏. Neodnorodn¥e hranyçn¥e zadaçy y yx pryloΩenyq. – M.: Myr, 1971. – 372 s. 11. Haevskyj X., Hreher K., Zaxaryas K. Nelynejn¥e operatorn¥e uravnenyq y operatorn¥e dyfferencyal\n¥e uravnenyq. – M.: Myr, 1978. – 336 s. 12. Samojlenko A. M., Ylolov M. Neodnorodn¥e πvolgcyonn¥e uravnenyq s ympul\sn¥my voz- dejstvyqmy // Ukr. mat. Ωurn. – 1992. – 44, # 1. – S. 93 – 100. 13. Rutkas A. G., Vlasenko L. A. Existence, uniqueness and continuous dependence for implicit semili- near functional differential equations // Nonlinear Anal. TMA. – 2003. – 55, # 1-2. – P. 125 – 139. 14. Samojlenko A. M., Íkil\ M. I., Qkovec\ V. P. Linijni systemy dyferencial\nyx rivnqn\ z vyrodΩennqm. – Ky]v: Vywa ßk., 2000. – 296 s. 15. Vlasenko L. A. Degenerate time-dependent neutral functional differential equations in Banach spa- ces // Funct. Different. Equat. – 2007. – 14, # 2 – 4. – P. 423 – 438. Poluçeno 11.09.07 ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 2