Про точні умови глобальної стійкості різницевого рівняння, яке задовольняє умову Йорка

В продолжение предыдущих исследований авторов приведены простые достаточные условия глобальной устойчивости нулевого решения разностного уравнения xn+1 = qxn + fn (xn ,..., xn-k ), n ∈ Z, где нелинейные функции fn удовлетворяют условию Йорка. Для каждого натурального k интервал (0, 1] представлен ка...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2008
Hauptverfasser: Неня, О.І., Ткаченко, В.І., Трофімчук, С.І.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут математики НАН України 2008
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/164509
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Про точні умови глобальної стійкості різницевого рівняння, яке задовольняє умову Йорка / О.І. Неня, В.І. Ткаченко, С.І. Трофімчук // Український математичний журнал. — 2008. — Т. 60, № 1. — С. 73–80. — Бібліогр.: 18 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:В продолжение предыдущих исследований авторов приведены простые достаточные условия глобальной устойчивости нулевого решения разностного уравнения xn+1 = qxn + fn (xn ,..., xn-k ), n ∈ Z, где нелинейные функции fn удовлетворяют условию Йорка. Для каждого натурального k интервал (0, 1] представлен как объединение [(2k + 2)/3] подынтервалов, и для q с каждого подынтервала в явном виде приведено условие глобальной устойчивости. Полученные условия являются точными для класса уравнений, удовлетворяющих условию Йорка. Continuing our previous investigations, we give simple sufficient conditions for the global stability of the zero solution of the difference equation x n+1 = qx n + ƒn(x n, …, x n−k), n ∈ ℤ, where the nonlinear functions ƒn satisfy the Yorke condition. For every positive integer k, we represent the interval (0, 1] as the union of [(2k + 2)/3] disjoint subintervals, and, for q from each subinterval, we present a global-stability condition in explicit form. The conditions obtained are sharp for the class of equations satisfying the Yorke condition.
ISSN:1027-3190