Comparison theorems and necessary/sufficient conditions for the existence of nonoscillatory solutions of forced impulsive differential equations with delay
In 1997, A. H. Nasr provided necessary and sufficient conditions for the oscillation of the equation where η > 0, p, and g are continuous functions on [0,∞) such that p(t) ≥ 0, g(t) ≤ t, g′(t) ≥ α > 0, and lim t→∞ g(t) =∞. It is important to note that the condition g′(t) ≥ α > 0 is require...
Збережено в:
| Дата: | 2012 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Український математичний журнал
2012
|
| Назва видання: | Український математичний журнал |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/164517 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Comparison theorems and necessary/sufficient conditions for the existence of nonoscillatory solutions of forced impulsive differential equations with delay / Shao Yuan Huang, Sui Sun Cheng // Український математичний журнал. — 2012. — Т. 64, № 9. — С. 1233-1248. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | In 1997, A. H. Nasr provided necessary and sufficient conditions for the oscillation of the equation
where η > 0, p, and g are continuous functions on [0,∞) such that p(t) ≥ 0, g(t) ≤ t, g′(t) ≥ α > 0, and lim t→∞ g(t) =∞. It is important to note that the condition g′(t) ≥ α > 0 is required. In the paper, we remove this restriction under the superlinear assumption η > 1. In fact, we can do even better by considering impulsive differential equations with delay and obtain necessary and sufficient conditions for the existence of nonoscillatory solutions and also a comparison theorem that enables us to apply known oscillation results for impulsive equations without forcing terms to get oscillation criteria for the analyzed equations. |
|---|