Асимптотическая нормальность проекционной оценки бесконечномерно­го параметра нелинейной регрессии

Розглянуто модель нелінійної регресії в нескінченновимірному просторі. Похибки спостережень однаково розподілені та мають одиничний кореляційний оператор. Побудована проекційна оцінка параметра, одержані умови її слушності. Для параметра, що належить еліпсоїду в гіль- бертовому просторі, доведена ас...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:1993
Автор: Кукуш, А.Г.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 1993
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/164587
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Асимптотическая нормальность проекционной оценки бесконечномерно­го параметра нелинейной регрессии / А.Г. Кукуш // Український математичний журнал. — 1993. — Т. 45, № 9. — С. 1205–1214. — Бібліогр.: 5 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Розглянуто модель нелінійної регресії в нескінченновимірному просторі. Похибки спостережень однаково розподілені та мають одиничний кореляційний оператор. Побудована проекційна оцінка параметра, одержані умови її слушності. Для параметра, що належить еліпсоїду в гіль- бертовому просторі, доведена асимптотична нормальність оцінок. При цьому використано по­дання оцінки через множник Лагранжа, вивчена асимптотика останнього. Розглянуто приклад непарамегричного оцінювання сигналу при повторних спостереженнях в адитивному шумі. A model of nonlinear regression is studied in infinite-dimensional space. Observation errors are equally distributed and have the identity correlation operator. A projective estimator of a parameter is constructed, and the conditions under which it is true are established. For a parameter that belongs to an ellipsoid in a Hilbert space, we prove that the estimators are asymptotically normal; for this purpose, the representation of the estimator in terms of the Lagrange factor is used and the asymptotics of this factor are studied. An example of the nonparametric estimator of a signal is examined for iterated observations under an additive noise.
ISSN:1027-3190