Про закон повторного логарифма для зважених сум незалежних випадкових величин у банаховому просторі

Нехай (Xn) — незалежні випадкові величини в банаховому просторі, (bn) — послідовність дійсних чисел, Sn=∑₁ⁿbᵢXᵢ, i Bn=∑₁ⁿbᵢ². При моментних обмеженнях на величини Xn знайдені умови на ріст послідовності (bn), достатні для обмеженості й передкомпактності послідовності (Sn/BnlnlnBn)½) майже напевно. A...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:1993
Автори: Мацак, І.К., Плічко, А.М.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут математики НАН України 1993
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/164588
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Про закон повторного логарифма для зважених сум незалежних випадкових величин у банаховому просторі / І.К. Мацак, А.М. Плічко // Український математичний журнал. — 1993. — Т. 45, № 9. — С. 1225–1231. — Бібліогр.: 17 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Нехай (Xn) — незалежні випадкові величини в банаховому просторі, (bn) — послідовність дійсних чисел, Sn=∑₁ⁿbᵢXᵢ, i Bn=∑₁ⁿbᵢ². При моментних обмеженнях на величини Xn знайдені умови на ріст послідовності (bn), достатні для обмеженості й передкомпактності послідовності (Sn/BnlnlnBn)½) майже напевно. Assume that (Xn) are independent random variables in a Banach space, (bn) is a sequence of real numbers, Sn=∑₁ⁿbᵢXᵢ, and Bn=∑₁ⁿbᵢ². Under certain moment restrictions imposed on the variables Xn, the conditions for the growth of the sequence (bn) are established, which are sufficient for the almost sure boundedness and precompactness of the sequence(Sn/BnlnlnBn)½).
ISSN:1027-3190