О существовании равновесных состояний систем упругих шаров в пределе Больцмана - Энскога
Вивчаються рівноважні стани систем пружних куль в границі Больцмана - Енскога, коли (d→0, 1/v→∞ (z→∞), d³(1/v)=const (d³z=const)). Для цього використовуються рівняння Кірквуда - Зальцбурга. Доведено, що в границі Больцмана - Енскога існують розв'язки цих рівнянь, і граничні функції розподілу ст...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 1997 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут математики НАН України
1997
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/164600 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | О существовании равновесных состояний систем упругих шаров в пределе Больцмана - Энскога / Д.Я. Петрина, Е.Д. Петрина // Український математичний журнал. — 1997. — Т. 49, № 1. — С. 112–121. — Бібліогр.: 4 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Вивчаються рівноважні стани систем пружних куль в границі Больцмана - Енскога, коли (d→0, 1/v→∞ (z→∞), d³(1/v)=const (d³z=const)). Для цього використовуються рівняння Кірквуда - Зальцбурга. Доведено, що в границі Больцмана - Енскога існують розв'язки цих рівнянь, і граничні функції розподілу сталі. Використовуючи умову узгодженості і кластерності, доведено, що всі функції розподілу дорівнюють добутку одночастинкових, які в свою чергу можна подати степеневим рядом від z=d³z з певними коефіцієнтами.
We study equilibrium states of systems of hard spheres in the Boltzmann-Enskog limit (d→0, 1/v→∞ (z→∞), and d³(1/v)=const (d³z=const)). For this purpose, we use the Kirkwood-Salsburg equations. We prove that, in the Boltzmann-Enskog limit, solutions of these equations exist and the limit distribution functions are constant. By using the cluster and compatibility conditions, we prove that all distribution functions are equal to the product of one-particle distribution functions, which can be represented as power series in z=d³z with certain coefficients.
|
|---|---|
| ISSN: | 1027-3190 |