On fuzzy semi δ – V continuity in fuzzy δ – V topological space

New concepts of fuzzy semi δ – V and fuzzy semi δ – Λ sets were introduced in the work „On fuzzy semi δ – Λ sets and fuzzy semi δ – V sets V – 6” by the authors (J. Trip. Math. Soc., 6, 81 – 88 (2004)). It was shown that the family of all fuzzy semi δ – V sets forms a fuzzy supra topological space...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2008
Main Authors: Mukherjee, A., Halder, S.
Format: Article
Language:English
Published: Інститут математики НАН України 2008
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/164674
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On fuzzy semi δ – V continuity in fuzzy δ – V topological space / A. Mukherjee, S. Halder // Український математичний журнал. — 2008. — Т. 60, № 5. — С. 712–717. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-164674
record_format dspace
spelling Mukherjee, A.
Halder, S.
2020-02-10T13:46:11Z
2020-02-10T13:46:11Z
2008
On fuzzy semi δ – V continuity in fuzzy δ – V topological space / A. Mukherjee, S. Halder // Український математичний журнал. — 2008. — Т. 60, № 5. — С. 712–717. — Бібліогр.: 4 назв. — англ.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/164674
517.5
New concepts of fuzzy semi δ – V and fuzzy semi δ – Λ sets were introduced in the work „On fuzzy semi δ – Λ sets and fuzzy semi δ – V sets V – 6” by the authors (J. Trip. Math. Soc., 6, 81 – 88 (2004)). It was shown that the family of all fuzzy semi δ – V sets forms a fuzzy supra topological space on X denoted by ( X, FS δV ). The aim of this paper is to introduce the concept of fuzzy semi δ – V continuity in a fuzzy δ – V topological space. Finally, some properties, preservation theorems, etc., are studied.
Нові поняття нечітких напів δ - V та нечітких напів δ - Λ множин введено у роботі авторів „On fuzzy semi δ - Λ sets and fuzzy semi δ - V sets V - 6" (J. Trip. Math. Soc. - 2004. - 6. - C. 81 - 88). Було показано, що сім'я усіх нечітких напів δ - V множин формує нечіткий супра-топологічний простір в X, що позначається як ( X, FS δ V ). Метою даної статті є введення поняття нестійкої напів δ - V неперервності у нестійкому δ - V топологічному просторі. Також досліджено деякі її властивості, наведено теорему про збереження та інші питання.
en
Інститут математики НАН України
Український математичний журнал
Короткі повідомлення
On fuzzy semi δ – V continuity in fuzzy δ – V topological space
Про нечітку напів δ - V неперервність в нечіткому δ - V топологічному просторі
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On fuzzy semi δ – V continuity in fuzzy δ – V topological space
spellingShingle On fuzzy semi δ – V continuity in fuzzy δ – V topological space
Mukherjee, A.
Halder, S.
Короткі повідомлення
title_short On fuzzy semi δ – V continuity in fuzzy δ – V topological space
title_full On fuzzy semi δ – V continuity in fuzzy δ – V topological space
title_fullStr On fuzzy semi δ – V continuity in fuzzy δ – V topological space
title_full_unstemmed On fuzzy semi δ – V continuity in fuzzy δ – V topological space
title_sort on fuzzy semi δ – v continuity in fuzzy δ – v topological space
author Mukherjee, A.
Halder, S.
author_facet Mukherjee, A.
Halder, S.
topic Короткі повідомлення
topic_facet Короткі повідомлення
publishDate 2008
language English
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Про нечітку напів δ - V неперервність в нечіткому δ - V топологічному просторі
description New concepts of fuzzy semi δ – V and fuzzy semi δ – Λ sets were introduced in the work „On fuzzy semi δ – Λ sets and fuzzy semi δ – V sets V – 6” by the authors (J. Trip. Math. Soc., 6, 81 – 88 (2004)). It was shown that the family of all fuzzy semi δ – V sets forms a fuzzy supra topological space on X denoted by ( X, FS δV ). The aim of this paper is to introduce the concept of fuzzy semi δ – V continuity in a fuzzy δ – V topological space. Finally, some properties, preservation theorems, etc., are studied. Нові поняття нечітких напів δ - V та нечітких напів δ - Λ множин введено у роботі авторів „On fuzzy semi δ - Λ sets and fuzzy semi δ - V sets V - 6" (J. Trip. Math. Soc. - 2004. - 6. - C. 81 - 88). Було показано, що сім'я усіх нечітких напів δ - V множин формує нечіткий супра-топологічний простір в X, що позначається як ( X, FS δ V ). Метою даної статті є введення поняття нестійкої напів δ - V неперервності у нестійкому δ - V топологічному просторі. Також досліджено деякі її властивості, наведено теорему про збереження та інші питання.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/164674
citation_txt On fuzzy semi δ – V continuity in fuzzy δ – V topological space / A. Mukherjee, S. Halder // Український математичний журнал. — 2008. — Т. 60, № 5. — С. 712–717. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT mukherjeea onfuzzysemiδvcontinuityinfuzzyδvtopologicalspace
AT halders onfuzzysemiδvcontinuityinfuzzyδvtopologicalspace
AT mukherjeea pronečítkunapívδvneperervnístʹvnečítkomuδvtopologíčnomuprostorí
AT halders pronečítkunapívδvneperervnístʹvnečítkomuδvtopologíčnomuprostorí
first_indexed 2025-11-24T16:10:03Z
last_indexed 2025-11-24T16:10:03Z
_version_ 1850483909304778752
fulltext UDC 517.5 A. Mukherjee, S. Halder (Tripura Univ., India) ON FUZZY SEMI δδδδ – V CONTINUITY IN FUZZY δδδδ – V TOPOLOGICAL SPACE PRO NEÇITKU NAPIV δδδδ – V NEPERERVNIST| V NEÇITKOMU δδδδ – V TOPOLOHIÇNOMU PROSTORI New concepts of fuzzy semi δ – V and fuzzy semi δ – Λ sets were introduced in the work „On fuzzy semi δ – Λ sets and fuzzy semi δ – V sets V – 6” by the authors (J. Trip. Math. Soc., 6, 81 – 88 (2004)). It was shown that the family of all fuzzy semi δ – V sets forms a fuzzy supra topological space on X denoted by ( X, FS δV ). The aim of this paper is to introduce the concept of fuzzy semi δ – V continuity in a fuzzy δ – V topological space. Finally, some properties, preservation theorems, etc., are studied. Novi ponqttq neçitkyx napiv δ – V ta neçitkyx napiv δ – Λ mnoΩyn vvedeno u roboti avtoriv „On fuzzy semi δ – Λ sets and fuzzy semi δ – V sets V – 6” (J. Trip. Math. Soc. – 2004. – 6. – C. 81 – 88). Bulo pokazano, wo sim’q usix neçitkyx napiv δ – V mnoΩyn formu[ neçitkyj supra-topo- lohiçnyj prostir v X, wo poznaça[t\sq qk ( X, FS δV ). Metog dano] statti [ vvedennq ponqttq nestijko] napiv δ – V neperervnosti u nestijkomu δ – V topolohiçnomu prostori. TakoΩ do- slidΩeno deqki ]] vlastyvosti, navedeno teoremu pro zbereΩennq ta inßi pytannq. 1. Introduction. The notion of fuzzy semi δ – V and fuzzy semi δ – Λ set has been introduced by the authors in [1]. It was shown that the set of all fuzzy semi δ – V sets forms a fuzzy supra topological space denoted by ( )X FS V, δ . In Section 2, we study some properties on fuzzy semi δ – V continuity. Some theorems are also studied. Finally, in Section 3, we study some relationships between the above two continuities. Here we denote the complement of λ, i.e., 1 – λ , by λc , and the fuzzy topological space is denoted by ( X, F ). Below, we present several definitions and results for reader’s convenience. 1.1 [2]. Let S be a fuzzy subset of a fuzzy space ( X, F ). We define Λδ ( S ) and Vδ ( S ) as follows Λδ ( S ) = inf { G : S ≤ G, G ∈ Fδ O ( X, F ) } and Vδ ( S ) = sup { D : D ≤ S, D ∈ Fδ C ( X, F ) }. 1.2 [2]. Fuzzy subsets S, Q, and { Sj , j ∈ J } of a fuzzy space ( X, F ) possess the following properties: (1) S ≤ Λδ ( S ), (2) Q ≤ S implies that Λδ ( Q ) ≤ Λδ ( S ), (3) Λδ Λδ ( S ) = Λδ ( S ), (4) if S ∈ Fδ O ( X, F ), then S = Λδ ( S ), (5) Λδ { ∪ ( Sj , j ∈ J ) } = ∪ { Λδ ( Sj ) , j ∈ J }, (6) Λδ { ∩ ( Sj , j ∈ J ) } ≤ ∩ { Λδ ( Sj ) , j ∈ J }, (7) Λδ ( 1 – S ) = 1 – Vδ ( S ), (8) Λδ ( 0 ) = 0 and Λδ ( 1 ) = 1, (9) V q A iff V q Λδ ( A ), where V is a δ-closed subset of X. 1.3 [2]. Fuzzy subsets S, Q, and { Sj , j ∈ J } of a space ( X, F ) possess the fol- © A. MUKHERJEE, S. HALDER, 2008 712 ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 5 ON FUZZY SEMI δ – V CONTINUITY IN FUZZY δ – V TOPOLOGICAL SPACE 713 lowing properties: (1) Vδ ( 0 ) = 0 and Vδ ( 1 ) = 1, (2) Vδ ( S ) ≤ S, (3) Q ≤ S implies that Vδ ( Q ) ≤ Vδ ( S ), (4) Vδ Vδ ( S ) = Vδ ( S ), (5) if S ∈ Fδ C ( X, F ), then S = Vδ ( S ), (6) Vδ { ∩ ( Sj , j ∈ J ) } = ∩ { Vδ ( Sj ) , j ∈ J }, (7) ∪ { Vδ ( Sj ) , j ∈ J } ≤ Vδ { ∪ ( Sj , j ∈ J ) }, (8) M q A iff Vδ ( A ) q M, where M is a fuzzy δ-open subset of X. 1.4 [2]. A fuzzy subset S of a fuzzy space ( X, F ) is called a fuzzy δ – Λ set (resp., a fuzzy δ – V set) if S = Λδ ( S ) (resp., Vδ ( S ) = S ). 1.5 [2]. Let S be a fuzzy subset of a fuzzy space ( X, F ). We define η δ ( S ) and γ δ ( S ) as follows: η δ ( S ) = Vδ Λδ ( S ) and γ δ ( S ) = Λδ Vδ ( S ). 1.6 [2]. Fuzzy subsets S, Q, and { Sj , j ∈ J } of a space ( X, F ) possess the fol- lowing properties: (1) Q ≤ S implies that η δ ( Q ) ≤ η δ ( S ), (2) Vδ ( S ) ≤ η δ ( S ) ≤ Λδ ( S ), (3) η δ ( 0 ) = 0, η δ ( 1 ) = 1, (4) if S ∈ Fδ O ( X, F ) , then η δ ( S ) = Vδ ( S ), (5) η δ ( 1 – S ) = 1 – γ δ ( S ), (6) η δ ( S ) is bounded, (7) η δ { ∪ ( Sj , j ∈ J ) } ≥ ∪ { η δ ( Sj ) , j ∈ J }, (8) ∩ { η δ ( Sj ) , j ∈ J } ≥ η δ { ∩ ( Sj , j ∈ J ) }, (9) V q A iff η δ ( A ) q Λδ ( V ), where V is a δ-closed subset of X. 1.7 [2]. Fuzzy subsets S, Q, and { Sj , j ∈ J } of a fuzzy space ( X, F ) possess the following properties: (1) Q ≤ S implies that γ δ ( Q ) ≤ γ δ ( S ), (2) Vδ ( S ) ≤ γ δ ( S ) ≤ Λδ ( S ), (3) γ δ ( 0 ) = 0, γ δ ( 1 ) = 1, (4) if S ∈ Fδ C ( X, F ) then γ δ ( S ) = Λδ ( S ), (5) γ δ ( S ) is bounded, (6) γ δ { ∪ ( Sj , j ∈ J ) } ≥ ∪ { γ δ ( Sj ) , j ∈ J }, (7) γ δ { ∩ ( Sj , j ∈ J ) } ≤ ∩ γ δ { ( Sj ) , j ∈ J }, (8) V q A iff γ δ ( A ) q Vδ ( V ), where V is a δ-open subset of X. 1.8 [2]. A fuzzy subset S of a fuzzy space ( X, F ) is called a fuzzy δ – η set (resp., a fuzzy δ – γ set) iff S = η δ ( S ) (resp., S = γ δ ( S ) ). 1.9 [2]. A fuzzy set S of a fuzzy space X is a δ – η set iff Sc is a fuzzy δ – γ set. ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 5 714 A. MUKHERJEE, S. HALDER 1.10 [2]. The families of all fuzzy δ – Λ sets and all fuzzy δ – V sets form fuzzy Alexandroff spaces. We denote them by ( X, FΛδ ) and ( X, FVδ ), respectively, and call them the fuzzy δ – Λ topological space and the fuzzy δ – V topological space, respectively. 1.11 [1]. A fuzzy subset S of a fuzzy space ( X, F ) is called a fuzzy semi δ – V set if there exists a fuzzy δ – V set H such that H ≤ S ≤ Λδ ( H ) = γ S ( H ), and a fuzzy subset G is said to be a fuzzy semi δ – Λ set if there exists a fuzzy δ – Λ set K such that Vδ ( K ) ≤ G ≤ K. 1.12 [1]. If S is a fuzzy δ – V set, then it is obviously a fuzzy semi δ – V set, but the converse statement is not necessarily true. Similarly, if G is a fuzzy δ – Λ set, then it is obviously a fuzzy semi δ – Λ set. 1.13 [1]. For any fuzzy subset λ of a fuzzy space X, the following statements are equivalent: (a) λ is a fuzzy semi δ – V set, (b) λc is a fuzzy semi δ – Λ set, (c) η δ ( λc ) ≤ λc, (d) γ δ ( λ ) ≥ λ. 1.14 [1]. Let S be a fuzzy subset of a fuzzy space ( X, F ). We define ωδ ( S ) and mδ ( S ) as follows: ωδ ( S ) = ∩ { G : G ≥ S, G is a fuzzy semi δ – Λ set } and mδ ( S ) = ∪ { G : G ≤ S, G is a fuzzy semi δ – V set }. 1.15 [1]. A fuzzy subset S of a fuzzy space ( X, F ) is a fuzzy semi δ – V set (resp., a fuzzy semi δ – Λ set) iff mδ ( A ) = A [resp., ωδ ( A ) = A ]. 1.16 [1]. Fuzzy subsets S, Q, and { Sj , j ∈ J } of a fuzzy space ( X, F ) possess the following properties: (1) S ≥ mδ ( S ), (2) Q ≤ S implies that mδ ( Q ) ≤ mδ ( S ), (3) mδ mδ ( S ) = mδ ( S ), (4) mδ { ∪ ( Sj , j ∈ J ) } ≥ ∪ { mδ ( Sj ) , j ∈ J }, (5) mδ { ∩ ( Sj , j ∈ J ) } ≤ ∩ { mδ ( Sj ) , j ∈ J }, (6) mδ ( 1 – S ) = 1 – ωδ ( S ), (7) mδ ( 0 ) = 0 and mδ ( 1 ) = 1, (8) mδ ( S ) is a fuzzy semi δ – V set, (9) mδ ( S ) ≤ Λδ ( S ). 1.17 [1]. Fuzzy subsets S, Q, and { Sj , j ∈ J } of a fuzzy space ( X, F ) possess the following properties: (1) S ≤ ωδ ( S ), (2) Q ≤ S implies that ωδ ( Q ) ≤ ωδ ( S ), (3) ωδ ωδ ( S ) = ωδ ( S ), (4) ωδ { ∪ ( Sj , j ∈ J ) } ≥ ∪ { ωδ ( Sj ) , j ∈ J }, ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 5 ON FUZZY SEMI δ – V CONTINUITY IN FUZZY δ – V TOPOLOGICAL SPACE 715 (5) ωδ { ∩ ( Sj , j ∈ J ) } ≤ ∩ { ωδ ( Sj ) , j ∈ J }, (6) ωδ ( 0 ) = 0 and ωδ ( 1 ) = 1, (7) ωδ ( S ) is a fuzzy semi δ – Λ set, (9) Vδ ( S ) ≤ ωδ ( S ). 1.18 [1]. The family of all fuzzy semi δ – V sets forms a fuzzy supra topological space and is denoted by FS δV ; the supra topological space may be denoted by ( X, FS δV ) and can be written as a fuzzy supra semi δ – V topological space. 1.19 [3]. A function f : ( )X FS V, 1 δ → ( )Y FS V, 2 δ is said to be fuzzy supra semi δ – – V continuous if the inverse image of every fuzzy semi δ – V set in Y is a fuzzy semi δ – V set in X. 1.20 [2]. A function f : ( )X F, 1 Λδ → ( )Y F, 2 Λδ is called fuzzy Λδ - continuous iff the inverse image of a fuzzy Λδ - open set in ( )Y F, 2 Λδ is a fuzzy Λδ -open set in ( )X F, 1 Λδ . 1.21 [4]. A function f : ( X, F1 ) → ( Y, F2 ) is called fuzzy δ – Λ continuous iff the inverse image of a δ – Λ set in ( Y, F2 ) is a fuzzy δ-open set in ( X, F1 ). 2. Fuzzy semi δδδδ – V continuity in a fuzzy δδδδ – V topological space. In this sec- tion, we introduce fuzzy semi δ – V continuity in the fuzzy δ – V topological space. Some related properties are to be studied. Some important theorems are also intro- duced. Definition 2.1. A function f : ( )X FV, 1 δ → ( )Y FV, 2 δ from a fuzzy topological space X into a fuzzy topological space Y is called fuzzy semi δ – V continuous if f – 1 ( B ) is a fuzzy semi δ – V set of X for each B ∈ FV 2 δ . Example 2.1. Let X = { a, b, c } and let A and B be fuzzy sets of X defined as follows: A ( a ) = 0.3, A ( b ) = 0.2, A ( c ) = 0.4, B ( a ) = 0.15, B ( b ) = 0.1, B ( c ) = 0.2. We set F1 = { 0, A, 1 } and F2 = { 0, B, 1 } and define f : ( )X FV, 1 δ → ( )Y FV, 2 δ as f ( x ) = x. It is clear that FV 1 δ = { 0, Ac, 1 } and FV 2 δ = { 0, Bc, 1 }. Here, f – 1 ( 0 ) = 0, f – 1 ( 1 ) = 1, and f – 1 ( Bc ) = Bc ∉ FV 1 δ . Then Vδ ( A ) = 0. Hence, 0 = Vδ ( A ) ≤ B ≤ A. If A is a fuzzy δ – Λ set in X, then B is a fuzzy semi δ – Λ set in X. Hence, Bc is a fuzzy semi δ – V set in X. Therefore, the inverse image of a fuzzy δ – V set in Y is a fuzzy semi δ – V set in X. Hence, f is fuzzy semi δ – V continuous but not fuzzy Vδ -continuous. Again, f is also fuzzy supra semi δ – V continuous. Taking into account that Bc is a fuzzy δ – V set and using 1.12, we conclude that Bc is a fuzzy semi δ – V set. Theorem 2.1. Let f : ( )X FV, 1 δ → ( )Y FV, 2 δ be a mapping from a fuzzy topologi- cal space ( )X FV, 1 δ into a fuzzy topological space ( )X FV, 2 δ . Then the following statements are equivalent: (i) f is fuzzy semi δ – V continuous; (ii) f – 1 ( B ) is a fuzzy semi δ – Λ set in X for every fuzzy δ – Λ set B in Y ; (iii) f [ ωδ ( A ) ] ≤ Λδ [ f ( A ) ] for every fuzzy set A of X; (iv) ωδ [ f – 1 ( B ) ] ≤ f – 1 [ Λδ ( B ) ] for every fuzzy set B of Y ; ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 5 716 A. MUKHERJEE, S. HALDER (v) f – 1 [ Vδ ( Bc ) ] ≤ mδ [ f – 1 ( Bc ) ], where Bc is the complement of B. Proof. (i) ⇒ (ii). f is fuzzy semi δ – V continuous iff f – 1 ( Bc ) is a fuzzy semi δ – V set in X for every Bc ∈ FV 2 δ iff 1 – f – 1 ( Bc ) is fuzzy semi δ – Λ in X for every 1 – Bc being a fuzzy δ – Λ set in Y iff f – 1 ( B ) is a fuzzy semi δ – Λ set in X for every B being a fuzzy δ – Λ set in Y [from 1.13, 1.2 (7), and 1.4]. The required implication is proved. (ii) ⇒ (iii). Let A be a fuzzy set of X and let f ( A ) be a fuzzy set of Y. Then Λδ [ f ( A ) ] [from 1.2 (3) and 1.4] is a fuzzy δ – Λ set in Y. Hence, it follows from (ii) that f – 1 Λδ [ f ( A ) ] is a fuzzy semi δ – Λ set in X and ωδ ( A ) ≤ ωδ [ f – 1 f ( A ) ] ≤ ωδ f – 1 Λδ [ f ( A ) ] [from 1.2 (1)] = = f – 1 Λδ [ f ( A ) ] [from 1.15]. Therefore, f [ ωδ ( A ) ] ≤ f f – 1 Λδ [ f ( A ) ] ≤ Λδ [ f ( A ) ]. (iii) ⇒ (iv). Let A = f – 1 ( B ). Then f ( A ) = f f – 1 ( B ) ≤ B, and from 1.2 (2) we have Λδ [ f ( A ) ] ≤ Λδ ( B ). Hence, it follows from (iii) that f [ ωδ [ f – 1 ( B ) ] ] ≤ Λδ ( B ), i.e., f – 1 f [ ωδ [ f – 1 ( B ) ] ] ≤ f – 1 Λδ ( B ), i.e., ωδ [ f – 1 ( B ) ] ≤ f – 1 f [ ωδ [ f – 1 ( B ) ] ] ≤ f – 1 Λδ ( B ). (iv) ⇒ (v). 1 – ωδ [ f – 1 ( B ) ] ≥ 1 – f – 1 Λδ ( B ), i.e., f – 1 [ Vδ ( Bc ) ] ≤ mδ [ f – 1 ( Bc ) ] [from 1.2 (7) and 1.16 (6)]. (v) ⇒ (i). Let Bc be a fuzzy δ – V set. Then it follows from 1.4 that Bc = Vδ ( Bc ), i.e., f – 1 ( Bc ) = f – 1 [ Vδ ( Bc ) ] ≤ mδ [ f – 1 ( Bc ) ] ≤ f – 1 ( Bc ) [from 1.16 (1)]. Hence, mδ [ f – 1 ( Bc ) ] = f – 1 ( Bc ). Thus, f is fuzzy semi δ – V continuous. Theorem 2.2. Let f : ( )X FV, 1 δ → ( )Y FV, 2 δ be a bijective mapping from a fuzzy topological space ( )X FV, 1 δ into a fuzzy topological space ( )X FV, 2 δ . Then f is fuzzy semi δ – V continuous iff f [ mδ ( Ac ) ] ≥ Vδ [ f ( Ac ) ]. Proof. f [ mδ ( Ac ) ] ≥ Vδ [ f ( Ac ) ] iff 1 – f [ mδ ( Ac ) ] ≤ 1 – Vδ [ f ( Ac ) ] iff f [ ω δ ( A ) ] ≤ ≤ Λδ [ f ( A ) ] [from 1.2 (7) and 1.16 (6)] iff f is fuzzy semi δ – V continuous [from Theorem 2.1]. Theorem 2.3. Let f : ( )X FV, 1 δ → ( )Y FV, 2 δ be a mapping from a fuzzy topologi- cal space ( )X FV, 1 δ into a fuzzy topological space ( )X FV, 2 δ . Then the following statements are equivalent: (i) f is fuzzy semi δ – V continuous; (ii) η δ [ f – 1 ( B ) ] ≤ f – 1 [ Λδ ( B ) ] for any fuzzy set B of Y ; (iii) γδ [ f – 1 ( Bc ) ] ≥ f – 1 [ Vδ ( Bc ) ], where Bc is the complement of B; (iv) f [ η δ ( A ) ] ≤ Λδ f ( A ) for any fuzzy set Ac of X. Proof. (i) ⇒ (iii). It follows from 1.3 (4) and 1.4 that Vδ ( Bc ) is a fuzzy δ – V set in X . If f is fuzzy semi δ – V continuous, then f – 1 [ Vδ ( Bc ) ] is a fuzzy semi δ – V set in X . Hence, γδ [ f – 1 ( Vδ ( Bc ) ) ] ≥ f – 1 [ Vδ ( Bc ) ] [from 1.13], i.e., f – 1 [ Vδ ( Bc ) ] ≤ γδ [ f – 1 ( Vδ ( Bc ) ) ] ≤ γδ [ f – 1 ( Bc ) ] [from 1.3 (2)]. (iii) ⇔ (ii). 1 – f – 1 [ Vδ ( Bc ) ] ≥ 1 – γδ [ f – 1 ( Bc ) ] iff η δ [ f – 1 ( B ) ] ≤ f – 1 [ Λδ ( B ) ] ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 5 ON FUZZY SEMI δ – V CONTINUITY IN FUZZY δ – V TOPOLOGICAL SPACE 717 [from 1.6 (5) and 1.2 (7)] for any fuzzy set B of Y. (ii) ⇒ (iv). Let B = f ( A ). Then f – 1 ( B ) = f – 1 f ( A ) ≥ A. Hence, it follows from (ii) that η δ ( A ) ≤ η δ [ f – 1 ( B ) ] [from 1.6 (1)] ≤ f – 1 [ Λδ ( B ) ] ≤ f – 1 [ Λδ f ( A ) ], i.e., f f – 1 [ Λδ f ( A ) ] ≥ f [ η δ ( A ) ], i.e., [ Λδ f ( A ) ] ≥ f f – 1 [ Λδ f ( A ) ] ≥ f [ η δ ( A ) ]. (iv) ⇒ (ii). Let A = f – 1 ( B ). Then f ( A ) = f f – 1 ( B ) ≤ B, i.e., Λδ ( B ) ≥ [ Λδ f ( A ) ] [from 1.2 (2)] ≥ f [ η δ [ f – 1 ( B ) ] ]. Consequently, f – 1 [ Λδ ( B ) ] ≥ f – 1 f [ η δ [ f – 1 ( B ) ] ] ≥ ≥ η δ [ f – 1 ( B ) ]. (iii) ⇒ (i). Let Bc be a fuzzy δ – V set in Y . Then Vδ ( Bc ) = Bc [from 1.4] and f – 1 ( Bc ) = f – 1 [ Vδ ( Bc ) ] ≤ γδ [ f – 1 ( Bc ) ]. Hence, it follows from 1.13 that f – 1 ( Bc ) is a fuzzy semi δ – V set in X. Therefore, f is fuzzy semi δ – V continuous. Thus, we have shown that (i) ⇒ (iii) ⇔ (ii) ⇔ (iv) and (iii) ⇒ (i). Theorem 2.4. Let f : ( )X FV, 1 δ → ( )Y FV, 2 δ be a bijective mapping from a fuzzy topological space ( )X FV, 1 δ into a fuzzy topological space ( )X FV, 2 δ . Then f is fuzzy semi δ – V continuous iff f [ γδ ( Ac ) ] ≥ Vδ [ f ( Ac ) ]. Proof. f [ γδ ( Ac ) ] ≥ Vδ [ f ( Ac ) ] iff 1 – V δ [ f ( Ac ) ] ≥ 1 – f [ γδ ( Ac ) ] iff [ Λδ f ( A ) ] ≥ f [ η δ ( A ) ] [from 1.2 (7) and 1.6 (5)] iff f is fuzzy δ – V continuous [from Theorem 2.3]. 3. Relationship between fuzzy supra semi δδδδ – V continuity and fuzzy semi δδδδ – – V continuity. In this section, we introduce the relationship between fuzzy semi δ – V continuity, fuzzy supra semi δ – V continuity, and fuzzy Λδ continuity. Theorem 3.1. If a function f : X → Y is fuzzy supra semi δ – V continuous, then f is fuzzy semi δ – V continuous. Proof. Let A be a fuzzy δ – V set in Y. Then it follows from 1.12 that A is a fuzzy semi δ – V set. Since f is fuzzy supra semi δ – V continuous, f – 1 ( A ) is a fuzzy semi δ – V set in X, i.e., the inverse image of a fuzzy δ – V set in Y is a fuzzy semi δ – V set in X. Hence, f is fuzzy semi δ – V continuous. Remark 3.1. The converse statement is not necessarily true because a fuzzy semi δ – V set is not necessarily a fuzzy δ – V set. Theorem 3.2. If a function f : X → Y is fuzzy Λδ continuous, then it is also fuzzy semi δ – V continuous. Proof. Let A be a fuzzy δ – Λ set in Y. Since f is fuzzy Λδ continuous, we conclude that f – 1 ( A ) is a fuzzy δ – Λ set in X , i.e., f – 1 ( A ) is a fuzzy semi δ – Λ set in X [from 1.12]. Hence, by virtue of Theorem 2.1, f is fuzzy semi δ – V contin- uous. Remark 3.2. The converse statement is not necessarily true because a fuzzy semi δ – Λ set is not necessarily a fuzzy δ – Λ set. This follows from Example 2.1. 1. Mukherjee A., Halder S. On fuzzy semi δ – Λ sets and fuzzy semi δ – V sets V-6 // J. Trip. Math. Soc. – 2004. – 6. – P. 81 – 88. 2. Mukherjee A., Halder S. Some properties of fuzzy δ – Λ sets and fuzzy δ – V sets V-6 // Ibid. – P. 23 – 34. 3. Mukherjee A., Halder S. On fuzzy supra semi δ – V continuity in fuzzy supra semi δ – V topo- logical space // Acta math. hung. (to appear). 4. Mukherjee A., Halder S. On fuzzy Λδ continuous functions // Indian J. Pure and Appl. Math. (to appear). Received 23.08.05 ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 5