Generators and relations for wreath products
Generators and defining relations for wreath products of groups are given. Under a certain condition (conormality of generators), they are minimal.
Saved in:
| Date: | 2008 |
|---|---|
| Main Authors: | Drozd, Yu.A., Skuratovskii, R.V. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2008
|
| Series: | Український математичний журнал |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/164693 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Generators and relations for wreath products / Yu.A. Drozd, R.V. Skuratovskii // Український математичний журнал. — 2008. — Т. 60, № 7. — С. 997–999. — Бібліогр.: 2 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Generators and relations for wreath products
by: Drozd, Yu.A., et al.
Published: (2008) -
Lifting functors to Eilenberg-Moore category of monad generated by functor CpCp
by: Pikhurko, О.B., et al.
Published: (1992) -
Generalized Weyl theorem and tensor product
by: Rashid, M.H.M.
Published: (2012) -
On the Space of Sequences of p-Bounded Variation and Related Matrix Mappings
by: Başar, F., et al.
Published: (2003) -
On the Relation between Curvature, Diameter, and Volume of a Complete Riemannian Manifold
by: Si Duc Quang, et al.
Published: (2004)