First eigenvalue of the Laplace operator and mean curvature
The main theorem of this paper states a relation between the first nonzero eigenvalue of Laplace operator and the squared norm of mean curvature in irreducible compact homogeneous manifolds under spatial conditions. This statement has some results that states in the remainder of paper. Основна тео...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 2008 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2008
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/164697 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | First eigenvalue of the Laplace operator and mean curvature / A. Etemad // Український математичний журнал. — 2008. — Т. 60, № 7. — С. 1000–1003. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | The main theorem of this paper states a relation between the first nonzero eigenvalue of Laplace operator
and the squared norm of mean curvature in irreducible compact homogeneous manifolds under spatial
conditions. This statement has some results that states in the remainder of paper.
Основна теорема цієї статті встановлює зв'язок між першим ненульовим власним значенням оператора Лапласа та нормою середньої кривини у квадраті у незвідних компактних однорідних мно-говидах під дією просторових умов. Одержано також деякі інші результати.
|
|---|---|
| ISSN: | 1027-3190 |