First eigenvalue of the Laplace operator and mean curvature

The main theorem of this paper states a relation between the first nonzero eigenvalue of Laplace operator and the squared norm of mean curvature in irreducible compact homogeneous manifolds under spatial conditions. This statement has some results that states in the remainder of paper.

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Etemad, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/164697
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:First eigenvalue of the Laplace operator and mean curvature / A. Etemad // Український математичний журнал. — 2008. — Т. 60, № 7. — С. 1000–1003. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-164697
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1646972025-02-09T11:47:46Z First eigenvalue of the Laplace operator and mean curvature Перше власне значення оператора Лапласа та середня кривина Etemad, A. Короткі повідомлення The main theorem of this paper states a relation between the first nonzero eigenvalue of Laplace operator and the squared norm of mean curvature in irreducible compact homogeneous manifolds under spatial conditions. This statement has some results that states in the remainder of paper. Основна теорема цієї статті встановлює зв'язок між першим ненульовим власним значенням оператора Лапласа та нормою середньої кривини у квадраті у незвідних компактних однорідних мно-говидах під дією просторових умов. Одержано також деякі інші результати. This work was partially supported by IUT (CEAMA). 2008 Article First eigenvalue of the Laplace operator and mean curvature / A. Etemad // Український математичний журнал. — 2008. — Т. 60, № 7. — С. 1000–1003. — Бібліогр.: 6 назв. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/164697 517.5 en Український математичний журнал application/pdf Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Короткі повідомлення
Короткі повідомлення
spellingShingle Короткі повідомлення
Короткі повідомлення
Etemad, A.
First eigenvalue of the Laplace operator and mean curvature
Український математичний журнал
description The main theorem of this paper states a relation between the first nonzero eigenvalue of Laplace operator and the squared norm of mean curvature in irreducible compact homogeneous manifolds under spatial conditions. This statement has some results that states in the remainder of paper.
format Article
author Etemad, A.
author_facet Etemad, A.
author_sort Etemad, A.
title First eigenvalue of the Laplace operator and mean curvature
title_short First eigenvalue of the Laplace operator and mean curvature
title_full First eigenvalue of the Laplace operator and mean curvature
title_fullStr First eigenvalue of the Laplace operator and mean curvature
title_full_unstemmed First eigenvalue of the Laplace operator and mean curvature
title_sort first eigenvalue of the laplace operator and mean curvature
publisher Інститут математики НАН України
publishDate 2008
topic_facet Короткі повідомлення
url https://nasplib.isofts.kiev.ua/handle/123456789/164697
citation_txt First eigenvalue of the Laplace operator and mean curvature / A. Etemad // Український математичний журнал. — 2008. — Т. 60, № 7. — С. 1000–1003. — Бібліогр.: 6 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT etemada firsteigenvalueofthelaplaceoperatorandmeancurvature
AT etemada perševlasneznačennâoperatoralaplasataserednâkrivina
first_indexed 2025-11-25T22:34:08Z
last_indexed 2025-11-25T22:34:08Z
_version_ 1849803459208937472
fulltext UDC 517.5 A. Etemad (Isfahan Univ. Technology, Iran) FIRST EIGENVALUE OF THE LAPLACE OPERATOR AND MEAN CURVATURE* ПЕРШЕ ВЛАСНЕ ЗНАЧЕННЯ ОПЕРАТОРА ЛАПЛАСА ТА СЕРЕДНЯ КРИВИНА The main theorem of this paper states a relation between the first nonzero eigenvalue of Laplace operator and the squared norm of mean curvature in irreducible compact homogeneous manifolds under spatial conditions. This statement has some results that states in the remainder of paper. Основна теорема цiєї статтi встановлює зв’язок мiж першим ненульовим власним значенням опе- ратора Лапласа та нормою середньої кривини у квадратi у незвiдних компактних однорiдних мно- говидах пiд дiєю просторових умов. Одержано також деякi iншi результати. 1. Introduction. Let M be an n-dimensional Riemannian manifold and p ∈ M. For an orthonormal basis {e1, e2, . . . , en} of the tangent space TpM, the scalar curvature S of p is defined to be S(p) = ∑ i<j K(ei, ej), where K(ei, ej) is sectional curvature of M associated with tangent plane generated by ej and ej at P. Let S(L) be the scalar curvature of L, where L is a subspace of TpM of dimension r < n. Thus, the scalar curvature S(M) of M at p is nothing but the scalar curvature tangent space of M at p and if L is a 2-plane section, S(L) is nothing but the sectional curvature of L. For an integer k ≥ 0, denote by γ(n, k) the finite set consisting of k-tuples (n1, n2, . . . , nk) of integers grater than 1 satisfying n1 ≥ 2 and n1 + . . . + nk ≤ n. Denote by γ(n) the set of k-tuples with k ≥ 0 for fixed n. The cardinal number #γ(n) of γ(n) increases quite rapidly with n. For each k-tuples (n1, n2, . . . , nk), we define an invariant δ(n1, . . . , nk) by δ(n1, . . . , nk)(p) = S(p)− inf(S(L1) + . . . + S(Lk)), where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpM such that dim Li = ni, i = 1, . . . , k. In particular, we have δ(φ) = S, δ(2) = S − inf K. The invariants δ(n1, . . . , nk) with k > 0 and the scalar curvature S are very different in nature. For each k-tuples (n1, n2, . . . , nk) with in γ(n), we define following two positive numbers that are used in the following: c(n1, n2, . . . , nk) = n2(n + k − 1− ∑ j nj) 2(n + k − ∑ j nj) , b(n1, n2, . . . , nk) = 1 2 n(n− 1)− k∑ j=1 nj(nj − 1) . * This work was partially supported by IUT (CEAMA). c© A. ETEMAD, 2008 1000 ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 7 FIRST EIGENVALUE OF THE LAPLACE OPERATOR AND MEAN CURVATURE 1001 Now an isometric immersion f : Mn → Rm(c) from a Riemannian n-manifold into a Riemannian space form of constant curvature c is called an ideal immersion if δ(n1, n2, . . . , nk) = c(n1, . . . , nk)|H|2 + b(n1, . . . , nk)c for some k-tuples (n1, n2, . . . , nk) in γ(n). 2. Main theorem. In this section, the main theorem is stated. This theorem demonstrates a relation between the first nonzero eigenvalue of Laplace operator and squared norm of mean curvature in a manifold with certain properties. We define an ideal submanifold as a submanifold whose inclusion map is an ideal immersion. In the following, suppose that the first nonzero eigenvalue of Laplacian operator of a manifold is denoted by λ1 and the tensor of mean curvature is denoted by H. Theorem 2.1. Let M be an n-dimensional irreducible compact homogeneous Riemannian manifold that is also an ideal submanifold of a space form Rm(c) with c ≥ 0. Then λ1 ≥ n|H|2, where |H|2 is the squared norm of the mean curvature of M. Proof. Since M is an n-dimensional submanifold in a Riemannian space form of constant curvature c, by [1], at every point p ∈ M and for each of k-tuples (n1, n2, . . . , nk) in γ(n), we have δ(n1, n2, . . . , nk) ≤ c(n1, n2, . . . , nk)|H|2 + b(n1, n2, . . . , nk)c. Since M is an irreducible compact homogeneous Riemannian n-manifold, again by [1], for any of k-tuples (n1, n2, . . . , nk) in γ(n), λ1 satisfies λ1 ≥ n∆(n1, . . . , nk), where ∆(n1, . . . , nk) = δ(n1, . . . , nk) c(n1, . . . , nk) . Therefore, for a Riemannian n-manifold with an ideal immersion into a space form with nonnegative constant curvature, we have ∆(n1, . . . , nk) ≥ |H|2 for some k-tuples (n1, n2, . . . , nk) in γ(n). This enables us to have result. From now on, let us denote an n-dimensional Riemannian irreducible compact and homogeneous manifold by nRich-manifold. Other direct applications of this theorem can be found in the following corollaries: Corollary 2.1. Let M be a nRich-manifold that is also an ideal submanifold of a space form Rm(c) with c ≥ 0. Then∫ M |H|2dV ≤ λ1V n , (2.1) where V is the volume of M. If c = 0, we have an equality in (2.1). ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 7 1002 A. ETEMAD Proof. The first part is clear by Theorem 2.1. For the second part, by the Reilly formula (see [2]), λ1 has also the upper bound n V (M) ∫ M |H|2dV, so the equality is obtained. The Remark 2.1 as follows is needed for the next corollary and other results in the rest. Remark 2.1 [1]. Every totally umbilical submanifold of a real space form (Eucli- dean spaces, real hyperbolic spaces, spheres and real projective spaces) is an ideal immersion. We also denote a k-dimensional Euclidean space and a k-dimensional Euclidean sphere by Rk and Sk, respectively. Corollary 2.2. Let M be an irreducible compact homogeneous surface of unit sphere S3 such that the length of its mean curvature is constant the H0. If M is a topological sphere, then λ1 ≥ nH2 0 . Proof. By [3], with this conditions M is totally umbilic, so by Remark 2.1, M is an ideal hypersurface of Sn+1. Thus, this result is a spacial case of Theorem 2.1. Using Theorem 2.1, each of following results states a relation between the nonzero eigenvalue of Laplace operator and circumradius of certain submanifolds of Rn+1 and Sn+1. First, we need the definition of a circumradius for a manifold. For a given immersion x : Mn → Rn+p or Sn+p, where Mn is an n-dimensional manifold, the circumradius of Mn denoted by r = r(M) is the radius of the smallest closed ball containing x(M). Theorem 2.2. Let M be an nRich-manifold that is also an ideal hypersurface of Rn+1, n ≥ 2. In this case, λ1 ≥ n r2 . Proof. Let x : Mn → Rn+1 be an ideal (inclusion) immersion. Then by [4] for x, we have ∫ M |H|2dV ≥ V r2 . (2.3) So, the result may be obtained by Theorem 2.1. Theorem 2.3. Suppose that M is an nRich hypersurface of the unit sphere Sn+1, n ≥ 2, with following conditions: i) M is of constant scalar curvature S ≥ 0 and, in the case S = 0, the sign of mean curvature is unchanged, ii) Gaussian image of M is in a closed hemisphere of Sn+1, whence λ1 ≥ n r2 . Proof. By [5], conditions i) and ii) deduce that M is totally umbilic. So, by Remark 2.1, M is an ideal hypersurface of Sn+1 and, therefore, the result follows from Theorem 2.1. Corollary 2.3. Let M be an nRich hypersurface of Rn+1 such that, for a positive scalar a, the scalar curvature of M satisfies in S = a|H|. In this case, ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 7 FIRST EIGENVALUE OF THE LAPLACE OPERATOR AND MEAN CURVATURE 1003 λ1 ≥ n r2 . Proof. By Corollary 2.5 [6, p. 13], M is totally umbilic and so, by Remark 1.3, M is an ideal hypersurface of Rn+1. Therefore, the result follows from Theorem 2.1. 1. Chen B. Y. Some new obstructions to minimal and Lagrangian isometric immersions // Jap. J. Math. – 2000. – 26. – P. 105 – 127. 2. Colbois B., Grosjean J. F. A pinching theorem for the first eigenvalue of the Laplacian on hypersurfaces of the Euclidean space. – Prepublication, 2003. 3. Hsu Y. J., Wang T. H. A global pinching theorem for surfaces with constant mean curvature in S3 // Proc. Amer. Math. Soc. – 2002. – 130. – P. 157 – 161. 4. Rotondaro G. On total curvature of immersions and minimal submanifolds of spheres // Comment. math. Univ. carol. – 1993. – 3, № 34. – P. 459 – 463. 5. Alencar H., Rosenberg H., Santos W. On the Gauss map of hypersurfaces with constant scalar curvature in spheres // Proc. Amer. Math. Soc. – 2004. – 12. – P. 3731 – 3739. 6. Li H. Global rigidity theorems of hypersurfaces // Ark. Mat. – 1997. – 35. – P. 327 – 351. Received 22.02.07, after revision — 12.02.08 ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 7