Алгебраические многочлены, наименее уклоняющиеся от нуля по мере на отрезке

Досліджується задача про алгебраїчні многочлени із заданим старшим коефіцієнтом, що найменше відхиляються від нуля за мірою на відрізку [–1,1], а точніше, відносно функціонала μ(f)=mes{x∈[–1,1]:∣f(x)∣≥1}. Обговорюється аналогічна задача відносно інтегральних функціоналів ∫1–1φ(∣f(x)∣)dx для функцій...

Full description

Saved in:
Bibliographic Details
Date:2010
Main Author: Арестов, В.В.
Format: Article
Language:Russian
Published: Інститут математики НАН України 2010
Series:Український математичний журнал
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/164727
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Алгебраические многочлены, наименее уклоняющиеся от нуля по мере на отрезке / В.В. Арестов // Український математичний журнал. — 2010. — Т. 62, № 3. — С. 291–300. — Бібліогр.: 11 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-164727
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1647272025-02-10T00:29:52Z Алгебраические многочлены, наименее уклоняющиеся от нуля по мере на отрезке Algebraic polynomials least deviating from zero in measure on a segment Арестов, В.В. Статті Досліджується задача про алгебраїчні многочлени із заданим старшим коефіцієнтом, що найменше відхиляються від нуля за мірою на відрізку [–1,1], а точніше, відносно функціонала μ(f)=mes{x∈[–1,1]:∣f(x)∣≥1}. Обговорюється аналогічна задача відносно інтегральних функціоналів ∫1–1φ(∣f(x)∣)dx для функцій φ, визначених, невід'ємних та неспадних на півосі [0,+∞). We investigate the problem of algebraic polynomials with given leading coefficients that deviate least from zero on the segment [–1, 1] with respect to a measure, or, more precisely, with respect to the functional μ(f) = mes{x ∈ [–1, 1]: ∣f (x)∣ ≥ 1}. We also discuss an analogous problem with respect to the integral functionals ∫ –11 φ (∣f (x)∣) dx for functions φ that are defined, nonnegative, and nondecreasing on the semiaxis [0, +∞). 2010 Article Алгебраические многочлены, наименее уклоняющиеся от нуля по мере на отрезке / В.В. Арестов // Український математичний журнал. — 2010. — Т. 62, № 3. — С. 291–300. — Бібліогр.: 11 назв. — рос. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/164727 517.518.86 ru Український математичний журнал application/pdf Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Статті
Статті
spellingShingle Статті
Статті
Арестов, В.В.
Алгебраические многочлены, наименее уклоняющиеся от нуля по мере на отрезке
Український математичний журнал
description Досліджується задача про алгебраїчні многочлени із заданим старшим коефіцієнтом, що найменше відхиляються від нуля за мірою на відрізку [–1,1], а точніше, відносно функціонала μ(f)=mes{x∈[–1,1]:∣f(x)∣≥1}. Обговорюється аналогічна задача відносно інтегральних функціоналів ∫1–1φ(∣f(x)∣)dx для функцій φ, визначених, невід'ємних та неспадних на півосі [0,+∞).
format Article
author Арестов, В.В.
author_facet Арестов, В.В.
author_sort Арестов, В.В.
title Алгебраические многочлены, наименее уклоняющиеся от нуля по мере на отрезке
title_short Алгебраические многочлены, наименее уклоняющиеся от нуля по мере на отрезке
title_full Алгебраические многочлены, наименее уклоняющиеся от нуля по мере на отрезке
title_fullStr Алгебраические многочлены, наименее уклоняющиеся от нуля по мере на отрезке
title_full_unstemmed Алгебраические многочлены, наименее уклоняющиеся от нуля по мере на отрезке
title_sort алгебраические многочлены, наименее уклоняющиеся от нуля по мере на отрезке
publisher Інститут математики НАН України
publishDate 2010
topic_facet Статті
url https://nasplib.isofts.kiev.ua/handle/123456789/164727
citation_txt Алгебраические многочлены, наименее уклоняющиеся от нуля по мере на отрезке / В.В. Арестов // Український математичний журнал. — 2010. — Т. 62, № 3. — С. 291–300. — Бібліогр.: 11 назв. — рос.
series Український математичний журнал
work_keys_str_mv AT arestovvv algebraičeskiemnogočlenynaimeneeuklonâûŝiesâotnulâpomerenaotrezke
AT arestovvv algebraicpolynomialsleastdeviatingfromzeroinmeasureonasegment
first_indexed 2025-12-02T04:30:02Z
last_indexed 2025-12-02T04:30:02Z
_version_ 1850369431402708992
fulltext UDK 517.518.86 V. V. Arestov (Ural. un-t, Yn-t matematyky y mexanyky Ural. otd-nyq RAN, Rossyq) ALHEBRAYÇESKYE MNOHOÇLENÁ, NAYMENEE UKLONQGWYESQ OT NULQ PO MERE NA OTREZKE ∗∗∗∗ We study the problem of algebraic polynomials with given leading coefficient that deviate least from zero in measure on the segment [–,] 11 more ( precisely, with respect to the functional µ() f = = mesxfx ∈≥ {}) [–,]:() 111. We discuss a similar problem with respect to the integral functionals ϕfxdx () () −∫1 1 for functions ϕ which are defined, nonnegative, and nondecreasing on the half line [,) 0+∞. DoslidΩu[t\sq zadaça pro alhebra]çni mnohoçleny iz zadanym starßym koefici[ntom, wo naj- menße vidxylqgt\sq vid nulq za mirog na vidrizku [–,] 11, a toçniße, vidnosno funkcionala µ() f = mesxfx ∈≥ {}) [–,]:() 111. Obhovorg[t\sq analohiçna zadaça vidnosno intehral\nyx funkcionaliv ϕfxdx () () −∫1 1 dlq funkcij ϕ , vyznaçenyx, nevid’[mnyx ta nespadnyx na piv- osi [,) 0+∞. 1. Vvedenye. Pust\ Pm — mnoΩestvo alhebrayçeskyx mnohoçlenov fx m() = axk k k m = ∑ 0 (1.1) porqdka m≥0 s kompleksn¥my koπffycyentamy. Pry m≥1 na mnoΩestve Pm rassmotrym funkcyonal µ() fm = mesxfx m ∈≥ {} [–,]:() 111,(1.2) znaçenye kotoroho est\ mera Lebeha mnoΩestva toçek x∈[–,] 11, v kotor¥x modul\ mnohoçlena fmm ∈P bol\ße lybo raven 1. Dlq fyksyrovannoho y∈R vvedem velyçynu σmy() = infµ() (): yxfxf mm mmm 21 111 − −−− −∈ {} P,(1.3) kotorug moΩno ynterpretyrovat\ kak velyçynu nayluçßeho pryblyΩenyq funkcyy yx mm 21− mnoΩestvom Pm−1 alhebrayçeskyx mnohoçlenov porqdka m−1 otnosytel\no funkcyonala (1.2). Velyçynu (1.3) moΩno zapysat\ v neskol\ko ynoj forme. Pust\ Pmy() — mnoΩestvo alhebrayçeskyx mnohoçle- nov porqdka m, starßyj koπffycyent kotor¥x est\ ym21−, t. e. mnohoçlenov vyda ∗ V¥polnena pry podderΩke Rossyjskoho fonda fundamental\n¥x yssledovanyj (proekt 08- 01-00213) y Prohramm¥ hosudarstvennoj podderΩky veduwyx nauçn¥x ßkol RF (proekt NÍ- 3208.2010.1). © V. V. ARESTOV, 2010 ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 3291 292V. V. ARESTOV fx m() = yxfx mm m 21 1 − − +(), fmm −− ∈ 11 P. Tohda σmy() = infµ():() ffy mmm ∈ {} P;(1.4) πto uΩe est\ varyant zadaçy o mnohoçlenax, naymenee uklonqgwyxsq ot nulq. VaΩnug rol\ v dal\nejßem budut yhrat\ mnohoçlen¥ Çeb¥ßeva pervoho roda, kotor¥e dlq x∈[–,] 11 opredelen¥ formuloj Tx m() = cos() mx arccos. Pry m≥1 starßyj koπffycyent πtoho mnohoçlena raven 21 m− (sm., napry- mer, [1], hl. 3). Poπtomu zadaça (1.3), (1.4) netryvyal\na lyß\ pry y>1; qs- no, çto dostatoçno ohranyçyt\sq sluçaem y>1. Otnosytel\no zadaçy (1.4) spravedlyvo sledugwee utverΩdenye. Teorema 1.1. Pry m≥1, y>1 ymeet mesto ravenstvo σmy() = 211 − () −ym/.(1.5) Bolee toho, mnohoçlen fx m ∗() = Tyx m m 1/ ()(1.6) y eho sdvyhy fxh m ∗− (), h ≤ 11 −−ym/,(1.7) prynadleΩat mnoΩestvu Pmy() y qvlqgtsq πkstremal\n¥my mnohoçlenamy v zadaçe (1.4) (mnohoçlenamy, naymenee uklonqgwymysq ot nulq), y tol\ko takye mnohoçlen¥ reßagt zadaçu (1.4). ∏kstremal\n¥e mnohoçlen¥ v rassmotrenn¥x v dannoj rabote zadaçax okaza- lys\ vewestvenn¥my, poπtomu rezul\tat¥ rabot¥ (teorem¥ 1.1, 3.1 y 4.1) osta- gtsq spravedlyv¥my dlq mnohoçlenov (1.1) s vewestvenn¥my koπffycyentamy. Dlq tryhonometryçeskyx polynomov zadaçy, podobn¥e tem, kotor¥e obsuΩ- dagtsq v dannoj rabote, y rodstvenn¥e ym, yssledovan¥ ranee sovmestno avto- rom y A. S. Mendelev¥m [2]. 2. Rezul\tat¥ P. L. Çeb¥ßeva y H. Poja otnosytel\no alhebrayçeskyx mnohoçlenov, naymenee uklonqgwyxsq ot nulq. Zadaça (1.4) svqzana s ne- skol\kymy druhymy πkstremal\n¥my zadaçamy dlq mnohoçlenov, v çastnosty s zadaçej o mnohoçlenax s fyksyrovann¥m starßym koπffycyentom, naymenee uklonqgwymysq ot nulq otnosytel\no ravnomernoj norm¥ na kompaktax. Mnohoçlen¥ Çeb¥ßeva (naymenee uklonqgwyesq ot nulq s edynyçn¥m starßym koπffycyentom) na kompaktax kompleksnoj ploskosty yzuçalys\ mnohymy matematykamy y ymegt mnohoçyslenn¥e pryloΩenyq (sm., naprymer, [3]). Opyßem bolee podrobno rezul\tat¥ P. L. Çeb¥ßeva y H. Poja otnosytel\no alhebrayçeskyx mnohoçlenov, naymenee uklonqgwyxsq ot nulq. Pust\ �m = �m() R, m≥1, est\ mnoΩestvo alhebrayçeskyx mnohoçlenov Px m() = xcx m k k k m + = − ∑ 0 1 s edynyçn¥m starßym y proyzvol\n¥my (kompleksn¥my) ostal\n¥my koπffy- cyentamy. P. L. Çeb¥ßev [4] naßel naymen\ßee uklonenye ot nulq ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 3 ALHEBRAYÇESKYE MNOHOÇLENÁ, NAYMENEE UKLONQGWYESQ OT NULQ … 293 Em([–,]) 11 = infPP mCmm [–,] : 11 ∈ {} �(2.1) na otrezke [–,] 11 mnohoçlenov yz klassa �m. A ymenno, on pokazal, çto Em([–,]) 11 = 1 21 m− , m≥1,(2.2) y πkstremal\n¥m qvlqetsq mnohoçlen Px m ∗() = 1 21 mmTx − (), Tx m() = cos() mx arccos. S pomow\g lynejnoj zamen¥ lehko proverqetsq, çto dlq lgboho otrezka I = = [,] ab dlyn¥ I = ba − = 2ρ, ρ>0, velyçyna EI m() = infPP mCImm () :∈ {} � ymeet znaçenye EI m() = 2 2 ρ     m ; sootvetstvenno peresçyt¥vaetsq πkstremal\n¥j mnohoçlen. K prymeru, dlq otrezka [–,] ρρ takov¥m qvlqetsq mnohoçlen gx m ∗() = 2 2 ρ ρ         m mT x .(2.3) Dlq kompaktnoho podmnoΩestva Q⊂R poloΩym EQ m() = infPP mCQmm () :∈ {} �.(2.4) H. Pojq yzuçal naymen\ßee znaçenye Em() 2ρ = inf():() EQQ m∈ {} Q2ρ(2.5) velyçyn¥ (2.4) po semejstvu Q = Q() 2ρ vsex kompaktn¥x podmnoΩestv Q⊂R çyslovoj osy, mera kotor¥x ravna fyksyrovannomu çyslu 2ρ, ρ>0, y doka- zal sledugwee utverΩdenye (sm., naprymer, [5, c. 23]). Teorema 2.1. Pry lgbom ρ>0 dlq lgboho mnoΩestva Q∈Q() 2ρ v¥pol- nqetsq neravenstvo EQ m() ≥ 2 2 ρ     m , pryçem znak ravenstva dostyhaetsq lyß\ v tom sluçae, kohda Q est\ otrezok (dlyn¥ 2ρ). Kak sledstvye, Em() 2ρ = 2 2 ρ     m .(2.6) ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 3 294V. V. ARESTOV 3. Dokazatel\stvo teorem¥ 1.1. Svqz\ zadaç. Lemma 3.1. Pry lgb¥x m≥1, y>1 v zadaçe (1.4) suwestvuet πkstre- mal\n¥j mnohoçlen; vse nuly πkstremal\noho mnohoçlena vewestvenn¥ y leΩat na otrezke [–,] 11. Dokazatel\stvo. Mnohoçlen¥ fy mm ∈P() moΩno zapysat\ v vyde fx m() = yxz m k k m 21 1 − = − ∏(),(3.1) hde {} zkk m =1 — (neobqzatel\no vewestvenn¥e) korny mnohoçlena fm. Pry kaΩ- dom k , 1 ≤ k ≤ m , oboznaçym çerez xk toçku otrezka I = [–,] 11, blyΩaj- ßug k toçke zk v kompleksnoj ploskosty C . PoloΩym "fx m() = yxx m k k m 21 1 − = − ∏(). ∏to est\ mnohoçlen yz Pmy(), vse korny kotoroho leΩat na I . Pry πtom v¥- polnqetsq neravenstvo "fx m() ≤ fx m(), x∈I. Esly mnohoçlen fm ymeet xotq b¥ odyn koren\ vne I , to vsgdu, krome kornej mnohoçlena fm, prynad- leΩawyx I , πto neravenstvo budet strohym y, kak sledstvye, ymeet mesto strohoe neravenstvo µ() "fm < µ() fm. Sledovatel\no, dejstvytel\no, v zadaçe (1.4) moΩno ohranyçyt\sq mnohoçlenamy, vse m kornej kotor¥x prynadleΩat otrezku I . Funkcyonal µ() fm, fy mm ∈P(), qvlqetsq neprer¥vnoj funkcyej kornej mnohoçlena fm. Na kompakte Im πta funkcyq dostyhaet svoeho naymen\ßeho znaçenyq. Lemma dokazana. Dokazatel\stvo teorem¥  1.1. Pust\ fy mm ∈P() est\ πkstremal\n¥j mnohoçlen zadaçy (1.4). Eho moΩno predstavyt\ v vyde fx m() = ygx m m 21−(), gx m() = () xxj j m − = ∏ 1 ;(3.2) mnohoçlen gm prynadleΩyt mnoΩestvu �m (y, v sylu lemm¥ 3.1, vse eho korny leΩat na [–,] 11). Rassmotrym dva (kompaktn¥x) mnoΩestva Hm = xfx m ∈≥ {} [–,]:() 111, Gm = xfx m ∈≤ {} [–,]:() 111 = xgxy m m ∈≤ {} −− [–,]:()() 11211; ymeem HG mm + = 2 y Hm = σmy(). PoloΩym ρ = 12 −σmy()/, tohda 2ρ = 2−σmy() = Gm.(3.3) V sylu opredelenyq (2.5) y utverΩdenyq (2.6) spravedlyva cepoçka sootno- ßenyj ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 3 ALHEBRAYÇESKYE MNOHOÇLENÁ, NAYMENEE UKLONQGWYESQ OT NULQ … 295 2 2 ρ     m = Em() 2ρ ≤ EG mm () ≤ gmCGm () = 1 21 ym− .(3.4) Otsgda sleduet, çto 2ρ ≤ 21 ym −/.(3.5) Sootnoßenyq (3.3) y (3.5) dagt dlq velyçyn¥ (1.4) sledugwug ocenku snyzu: σmy() = 22 −ρ ≥ 211 − () −ym/.(3.6) Mnohoçlen (1.6) prynadleΩyt mnoΩestvu Pmy() y daet ocenku, obratnug (3.6). Takym obrazom, ravenstvo (1.5) provereno. Odnovremenno dokazano, çto mnohoçlen (1.6) qvlqetsq πkstremal\n¥m v zadaçe (1.4). Oçevydno, çto tohda y vse mnohoçlen¥ (1.7) budut πkstremal\n¥my. Ubedymsq, çto druhyx πkstre- mal\n¥x mnohoçlenov net. PredpoloΩym, çto mnohoçlen fy mm ∈P() qvlqetsq πkstremal\n¥m v zada- çe (1.4) y gmm ∈� est\ mnohoçlen, svqzann¥j s fm sootnoßenyem (3.2). Na πtyx mnohoçlenax vse neravenstva (3.4), y, kak sledstvye, (3.5), obratqtsq v ra- venstvo. V sylu teorem¥ 2.1 ravenstvo Em() 2ρ = EG mm () oznaçaet, çto mno- Ωestvo Gm qvlqetsq otrezkom [,] hh −+ ρρ dlyn¥ 2ρ, ρ = ym −1/. ∏tot ot- rezok prynadleΩyt [–,] 11. Sledovatel\no, Gm = [,] hh −+ ρρ , h ≤ 1−ρ . Ravenstvo EG mm () = gmCGm () vleçet teper\, çto gm qvlqetsq sootvetst- vugwym sdvyhom mnohoçlena (2.3). Kak sledstvye, fx m() = Tyxh m m 1/() − (). Teorema 1.1 dokazana. Yz dokazatel\stva teorem¥ 1.1 (a, vproçem, formal\no yz formulyrovok te- orem 1.1 y 2.1) vydno, çto spravedlyvo sledugwee utverΩdenye. Teorema 3.1. Zadaçy (1.4) y (2.5) svqzan¥ sootnoßenyqmy Em() 2ρ = 1 21 ym− , 2 = 2ρσ +my(), ρ = ym −1/, y>1.(3.7) 4. Mnohoçlen¥, naymenee uklonqgwyesq ot nulq otnosytel\no yn- tehral\n¥x funkcyonalov. Zadaça o mnohoçlenax s fyksyrovann¥m starßym koπffycyentom, naymenee uklonqgwyxsq ot nulq, yzuçena ne tol\ko otnosy- tel\no ravnomernoj norm¥. Ona xoroßo yssledovana (sm., naprymer, [6], § 15) v prostranstvax L p (,) −11, 1≤<∞ p, nadelenn¥x normoj f L p (,) −11 = 1 2 1 11 fxdx p p () / − ∫       .(4.1) Vproçem, lyß\ pry p = 1 y p = 2 mnohoçlen¥ naymen\ßeho uklonenyq v¥py- san¥ qvno; a ymenno, takov¥my qvlqgtsq (pry sootvetstvugwej normyrovke) mnohoçlen¥ Çeb¥ßeva vtoroho roda () p=1 y mnohoçlen¥ LeΩandra () p=2 (sm., naprymer, [7], § 2.9). Mnohoçlen¥, naymenee uklonqgwyesq ot nulq, yz- vestn¥ [8] ewe v prostranstve L011 (,) −, a toçnee, otnosytel\no funkcyonala ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 3 296V. V. ARESTOV f L011 (,) − = expln() 1 2 1 1 fxdx − ∫       .(4.2) Pust\ teper\ Φ — mnoΩestvo funkcyj ϕ , opredelenn¥x, neotrycatel\n¥x y neub¥vagwyx na poluosy [,) 0+∞. V dannom punkte budet obsuΩdat\sq za- daça o mnohoçlenax, naymenee uklonqgwyxsq ot nulq otnosytel\no yntehral\- n¥x funkcyonalov ϕfxdx () () − ∫ 1 1 , ϕ∈Φ.(4.3) Vo mnoΩestve Pm alhebrayçeskyx mnohoçlenov porqdka m rassmotrym lynejn¥j operator Am, kotor¥j mnohoçlenu (1.1) sopostavlqet eho starßug komponentu, normyrovannug mnoΩytelem 21 −− () m: ()() Aft mm = 21 −− () m m m ax, fmm ∈P.(4.4) Netrudno ponqt\, çto zadaça o mnohoçlene, naymenee uklonqgwemsq ot nulq otnosytel\no (proyzvol\noj) norm¥ na prostranstve Pm, πkvyvalentna prob- leme v¥çyslenyq norm¥ operatora (4.4). V çastnosty, rezul\tat P. L. Çeb¥ße- va (2.2) oznaçaet, çto norma operatora (4.4) na mnoΩestve Pm s ravnomernoj normoj ravna edynyce. Dlq funkcyy ϕ∈Φ oboznaçym çerez cm() ϕ naymen\ßug konstantu v ne- ravenstve ϕ21 1 1 −− − () ∫() m m m axdx ≤ cfxdx mm ()() ϕϕ() − ∫ 1 1 , fmm ∈P.(4.5) PoloΩym cm ∗ = sup(): cmϕϕ∈ {} Φ.(4.6) NyΩe v teoreme 4.1 budet ukazano toçnoe znaçenye πtoj velyçyn¥. Klassu Φ prynadleΩyt, v çastnosty, funkcyq ϕ∗, opredelennaq sootno- ßenyqmy ϕ∗() u = 001 11 ,[,), ,[,). u u ∈ ∈+∞     (4.7) Dlq πtoj funkcyy funkcyonal¥ (4.3) y (1.2) sovpadagt: ϕ∗ − () ∫fxdx m() 1 1 = µ() fm.(4.8) Poπtomu velyçyna αm = cm() ϕ∗ qvlqetsq naymen\ßej konstantoj v nera- venstve µ() () 21 −− m m m ax ≤ αµ mmf (), fmm ∈P.(4.9) ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 3 ALHEBRAYÇESKYE MNOHOÇLENÁ, NAYMENEE UKLONQGWYESQ OT NULQ … 297 Teorema 4.1. Pry lgbom m≥1 ymegt mesto ravenstva cm ∗ = αm = 1.(4.10) Teorema 4.1 v¥tekaet yz pryvedenn¥x nyΩe lemm 4.1 y 4.2. Rassmotrym neskol\ko bolee obwug sytuacyg. Pust\ Λm — proyzvol\n¥j lynejn¥j operator v Pm. Dlq funkcyy ϕ∈Φ oboznaçym çerez cm() ϕ = = cmm (,) Λϕ nayluçßug (naymen\ßug vozmoΩnug) konstantu v neravenstve ϕ()() Λmmftdt () − ∫ 1 1 ≤ cftdt mmm (,)() Λϕϕ() − ∫ 1 1 , fmm ∈P.(4.11) Otmetym, çto, naprymer, dlq funkcyy ϕpu() = up konstanta () (,)/ cmmp p Λϕ1 qvlqetsq normoj operatora Λm na podprostranstve Pm, nadelennom normoj prostranstva Lp. Predstavlqet ynteres naybol\ßaq yz konstant cmm (,) Λϕ, t. e. velyçyna cmm () Λ = sup(,): cmm ΛΦ ϕϕ∈ {}.(4.12) V sylu (4.8) velyçyna αmm () Λ = cmm (,) Λϕ∗ qvlqetsq naymen\ßej kon- stantoj v neravenstve µ() Λmmf ≤ αµ mmmf ()() Λ, fmm ∈P.(4.13) Na mnoΩestve tryhonometryçeskyx polynomov neravenstva typa (4.13) yzuçal A. H. Babenko [9] v 1992 hodu. On poluçyl dvustoronnye ocenky konstant¥ v ta- kom neravenstve dlq dovol\no ßyrokoho klassa operatorov y, v çastnosty, dlq klassyçeskyx operatorov vzqtyq starßej harmonyky y dyfferencyrovanyq. Esly Λm/≡0, to αmm () Λ ≥ 1.(4.14) Dejstvytel\no, predpoloΩym, çto mnohoçlen fmm ∈P obladaet svojstvom Λmmf/≡0. Rassmotrym semejstvo mnohoçlenov {} , ufu m>0. Ymeem µ() ufm = mestftu m ∈≥ {} [–,]:()/ 111 → 2, u→+∞. Takoe Ωe svojstvo ymeet y velyçyna µ(()) Λmm uf = µ(()) uf mm Λ. Podstavlqq funkcyy {} , ufu m>0 v (4.13), poluçaem neravenstvo (4.14). Funkcyq (4.7) prynadleΩyt klassu Φ, poπtomu ymeet mesto neravenstvo αmm () Λ ≤ cmm () Λ. Na samom Ωe dele dve poslednye velyçyn¥ sovpadagt. ∏tot fakt, v obwem-to, qsen. V klasse tryhonometryçeskyx polynomov on do- kazan v [10]; dlq polnot¥ yzloΩenyq pryvedem eho dokazatel\stvo v Pm. Lemma 4.1. Pry lgbom m≥1 dlq lgboho odnorodnoho (v çastnosty, ly- nejnoho) operatora Λm v Pm ymeet mesto ravenstvo supcmm (,): ΛΦ ϕϕ∈ {} = αmm () Λ.(4.15) Dokazatel\stvo. Esly Λm≡0, to obe velyçyn¥ v (4.15) ravn¥ nulg. Budem sçytat\, çto Λm/≡0. Na dannom πtape ymeem 1≤≤ αmmmm c ()() ΛΛ. ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 3 298V. V. ARESTOV Dlq obosnovanyq lemm¥ ostalos\ dokazat\, çto dlq lgboj funkcyy ϕ∈Φ v¥polnqetsq neravenstvo cm() ϕ = cmm (,) Λϕ ≤ αmm () Λ; pry πtom moΩno sçytat\, çto αmm () Λ<+∞. Oboznaçym çerez Φc mnoΩestvo funkcyj ϕ , neprer¥vn¥x, neotrycatel\- n¥x y neub¥vagwyx na poluosy [,) 0∞ so svojstvom ϕ() 00 =. PredpoloΩym vnaçale, çto ϕ∈Φc. Pust\ f — yzmerymaq, ohranyçennaq funkcyq na [–,] 11, k prymeru, ffmm =∈P. Rassmotrym xarakterystyçeskug funkcyg λ() u = λ(;) uf = mestftu ∈≥ {} [–,]:() 11, u∈∞ [,) 0,(4.16) funkcyy f. Kak yzvestno (sm., naprymer, [11], §10.12, vproçem, πto lehko pro- veryt\ samostoqtel\no), ymeet mesto formula ϕftdt () () − ∫ 1 1 = – ϕλ ()() udu 0 ∞ ∫. Vzqv poslednyj yntehral po çastqm, poluçym predstavlenye ϕftdt () () − ∫ 1 1 = λϕ ()() udu 0 ∞ ∫.(4.17) Pry lgbom u>0 ymeem (sm. (4.16)) λ(;) uf = λ1; f u     = µ f u     . Poπtomu dlq lgboho mnohoçlena fm pry lgbom u>0 v¥polnqetsq neraven- stvo λ() ; uf mm Λ ≤ αλ mmm uf (); () Λ.(4.18) Poskol\ku αmm () Λ≥1, πto neravenstvo ymeet mesto y pry u=0. V sylu (4.17) y (4.18) ymeem ϕΛmmftdt () () − ∫ 1 1 = λϕ () ;() ufdu mm Λ 0 ∞ ∫ ≤ ≤ αλϕ mmm ufdu ();() () Λ 0 ∞ ∫ = αϕ mmmftdt ()() Λ() − ∫ 1 1 . Sledovatel\no, esly ϕ∈Φc, to cm() ϕ ≤ αmm () Λ. Rassmotrym proyzvol\nug funkcyg ϕ∈Φ. Ona ymeet ne bolee çem sçet- noe mnoΩestvo toçek razr¥va; oboznaçym πto mnoΩestvo çerez UU=() ϕ. MoΩno sçytat\, çto v kaΩdoj toçke razr¥va u>0 funkcyq ϕ neprer¥vna sprava. Funkcyg ϕ moΩno predstavyt\ v vyde summ¥ ϕϕϕ =+ cs neprer¥v- noj funkcyy ϕcc ∈Φ y funkcyy skaçkov ϕs. Dlq funkcyy ϕc (po dokazan- nomu) ymeem cmc () ϕ ≤ αmm () Λ. Ubedymsq, çto takoe Ωe neravenstvo ymeet mesto y dlq funkcyy ϕs. Neravenstvo (4.18) moΩno ynterpretyrovat\ kak ne- ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 3 ALHEBRAYÇESKYE MNOHOÇLENÁ, NAYMENEE UKLONQGWYESQ OT NULQ … 299 ravenstvo cmu () δ ≤ αmm () Λ dlq funkcyy skaçka δu v toçke u>0, oprede- lennoj formulamy δut() = 00 1 ,, ,. ≤< ≥     tu tu V sylu neravenstva (4.14) funkcyq skaçka v toçke 0 δ0()t = 00 10 ,, ,, t t = >     obladaet πtym Ωe svojstvom. Funkcyq ϕs predstavyma v vyde ϕs = quu uU ()δ ∈ ∑, hde qu()≥0 est\ velyçyna skaçka v toçke razr¥va u funkcyy ϕ . Otsgda sle- duet, çto dlq funkcyy skaçkov ϕs dejstvytel\no v¥polnqetsq neravenstvo cms () ϕ ≤ αmm () Λ. Okonçatel\no ymeem cm() ϕ = maxcc mcms (),() ϕϕ {} ≤ ≤ αmm () Λ. Lemma dokazana. Lemma 4.2. Pry lgbom m≥1 dlq nayluçßej konstant¥ αm v neraven- stve (4.9) ymeet mesto formula αm = 1.(4.19) Dokazatel\stvo. Dlq konstant¥ αm spravedlyva formula αm = sup () : () () µ µ 21 −− ∗ ∈         m m m m m ax f fm P;(4.20) zdes\ verxnqq hran\ beretsq po mnoΩestvu Pm ∗ mnohoçlenov fmm ∈P, dlq koto- r¥x µ() fm>0 yly, çto to Ωe samoe, fmC[–,] 11 = max():[–,] fxx m∈ {} 11 > > 1 . Predstavym starßyj koπffycyent mnohoçlena fmm ∈∗ P v vyde am = = ym21−. Tohda, ysxodq yz predstavlenyq (4.20), moΩem zapysat\ αm = sup () () y m m yx y >1 µ σ . Pry y>1 ymeem µ() yxm = 211 − () −ym/. Prymenqq teoremu  1.1, poluçaem αm = sup () () / y m m yx y >− − 1 1 21 µ = 1; tem sam¥m ravenstvo (4.19) provereno. Lemma dokazana. ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 3 300V. V. ARESTOV Teorema  4.1 v sylu lemm¥  4.2 qvlqetsq çastn¥m sluçaem lemm¥  4.1. Sledstvye. Dlq lgboj funkcyy ϕ∈Φ vo mnoΩestve Pm pry m≥1 ymeet mesto neravenstvo ϕfxdx m() () − ∫ 1 1 ≥ ϕ21 1 1 −− − () ∫() m m m axdx, fmm ∈P.(4.21) Pry lgbom m≥1 na klasse vsex funkcyj ϕ∈Φ (a ymenno, na funkcyy (4.7)) neravenstvo (4.21) neuluçßaemo. Dlq sravnenyq otmetym sledugwyj fakt. V prostranstve L111 (–,) nayme- nee uklonqgwymsq ot nulq (so starßym koπffycyentom, ravn¥m 1) qvlqetsq normyrovann¥j mnohoçlen Çeb¥ßeva vtoroho roda (sm., naprymer, [7], p. 2.9.31) Ux m() = 1 2 1 12 m mx x sin() + − arccos y pry πtom Uxdx m() − ∫ 1 1 = 1 21 m− . Sledovatel\no, dlq funkcyy ϕ1() u = u nayluçßej v neravenstve (4.5) qvlq- etsq konstanta cm() ϕ1 = 2 1 m+ . 1.Suetyn P. K. Klassyçeskye ortohonal\n¥e mnohoçlen¥. – M.: Nauka, 1979. 2.Arestov V. V., Mendelev A. S. O tryhonometryçeskyx polynomax, naymenee uklonqgwyxsq ot nulq // Dokl. AN. – 2009. – 425, # 6. – S. 733 – 736. 3.Smyrnov V. Y., Lebedev N. A. Konstruktyvnaq teoryq funkcyj kompleksnoho peremennoho. – M.; L.: Nauka, 1964. 4.Çeb¥ßev P. L. Teoryq mexanyzmov, yzvestn¥x pod nazvanyem parallelohrammov. Polnoe sobranye soçynenyj P. L. Çeb¥ßeva: V 5 t. T. 2. Matematyçeskyj analyz. – M.; L.: Yzd-vo AN SSSR, 1947. – S. 23 – 51. 5.Bernßtejn S. N. ∏kstremal\n¥e svojstva polynomov. – M.: ONTY, 1937. 6.Nykol\skyj S. M. Kvadraturn¥e formul¥. – M.: Nauka, 1979. 7.Tyman A. F. Teoryq pryblyΩenyq funkcyj dejstvytel\noho peremennoho. – M.: Fyzmat- hyz, 1960. 8.Hlaz¥ryna P. G. Neravenstvo brat\ev Markov¥x v prostranstve L0 na otrezke // Mat. za- metky. – 2005. – 78, # 1. – S. 59 – 65. 9.Babenko A. H. Neravenstva slaboho typa dlq tryhonometryçeskyx polynomov // Tr. Yn-ta matematyky y mexanyky Ural. otd-nyq RAN. – 1992. – 2. – S. 34 – 41. 10.Arestov V. V. Nekotor¥e πkstremal\n¥e zadaçy dlq tryhonometryçeskyx polynomov otno- sytel\no funkcyonalov typa ϕ - norm¥ // Tr. MeΩdunar. let. mat. ßkol¥ S. B. Steçkyna po teoryy funkcyj. – Tula: Yzd-vo Tul. un-ta, 2007. – S. 18 – 21. 11.Xardy H., Lyttl\vud DΩ., Polya H. Neravenstva. – M.: Yzd-vo ynostr. lyt., 1948. Poluçeno 19.10.09 ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 3