Слабкі локальні гомеоморфізми та B-сприятливі простори

Пусть X и Y — такие топологические пространства, что произвольное отображение f : X → Y, для которого каждый прообраз f⁻¹(G) открытого в Y множества G является fσ-множеством в X, можно представить в виде поточечной границы непрерывных отображений fn : X → Y. Исследуется, для каких подпространств Z п...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2008
Main Authors: Карлова, О.О., Михайлюк, В.В.
Format: Article
Language:Ukrainian
Published: Інститут математики НАН України 2008
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/164748
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Слабкі локальні гомеоморфізми та B-сприятливі простори / О.О. Карлова, В.В. Михайлюк // Український математичний журнал. — 2008. — Т. 60, № 9. — С. 1189–1195. — Бібліогр.: 12 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Пусть X и Y — такие топологические пространства, что произвольное отображение f : X → Y, для которого каждый прообраз f⁻¹(G) открытого в Y множества G является fσ-множеством в X, можно представить в виде поточечной границы непрерывных отображений fn : X → Y. Исследуется, для каких подпространств Z пространства Y отображения f : X → Z имеют такое же свойство. Let X and Y be topological spaces such that an arbitrary mapping f: X → Y for which every preimage f⁻¹(G) of a set G open in Y is an F σ-set in X can be represented in the form of the pointwise limit of continuous mappings f n : X → Y. We study the problem of subspaces Z of the space Y for which the mappings f: X → Z possess the same property.
ISSN:1027-3190