До теорем Скитовича - Дармуа та Хейде у банаховому просторі
Известная теорема Скитовича - Дармуа утверждает, что из независимости двух линейных форм от независимых случайных величин с ненулевыми коэффициентами следует, что случайные величины являются гауссовыми. Этот результат был обобщен Краковяком для случайных величин со значениями в банаховом пространств...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 2008 |
| Автор: | Миронюк, М.В. |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Інститут математики НАН України
2008
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/164751 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | До теорем Скитовича - Дармуа та Хейде у банаховому просторі / М.В. Миронюк // Український математичний журнал. — 2008. — Т. 60, № 9. — С. 1234–1242. — Бібліогр.: 19 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineСхожі ресурси
-
До теореми Скитовича- Дармуа на абелевих групах
за авторством: Миронюк, М.В.
Опубліковано: (2004) -
Теорема Скитовича - Дармуа для конечных абелевых групп
за авторством: Мазур, И.П.
Опубліковано: (2011) -
До теореми Скитовича–Дармуа на a-адичних соленоїдах
за авторством: Мазур, І.П.
Опубліковано: (2013) -
Теорема Скитовича - Дармуа для дискретных и компактных вполне несвязных абелевых групп
за авторством: Мазур, И.П.
Опубліковано: (2013) -
Теорема Хейде на a-адических соленоидах
за авторством: Миронюк, М.В.
Опубліковано: (2013)