Континуальність множини розв'язків одного класу рівнянь, які містять функцію частоти трійкових цифр числа

Исследуется уравнение v₁(x) = x, содержащее функцию v₁(x) частоты 1 в троичном разложении x. Доказано, что оно имеет только один рациональный корень и континуальное множество иррациональных корней. Приведен алгоритм построения корней. Описаны тополого-метрические свойства множества всех корней. Изло...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2008
1. Verfasser: Котова, О.В.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут математики НАН України 2008
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/164767
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Континуальність множини розв'язків одного класу рівнянь, які містять функцію частоти трійкових цифр числа / О.В. Котова // Український математичний журнал. — 2008. — Т. 60, № 10. — С. 1414–1421. — Бібліогр.: 10 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Исследуется уравнение v₁(x) = x, содержащее функцию v₁(x) частоты 1 в троичном разложении x. Доказано, что оно имеет только один рациональный корень и континуальное множество иррациональных корней. Приведен алгоритм построения корней. Описаны тополого-метрические свойства множества всех корней. Изложены некоторые факты, касающиеся уравнений vi (x), i = 0,2. We study the equation ν₁(x) = x, where ν₁(x) is the function of frequency of the digit 1 in the ternary expansion of x. We prove that this equation has a unique rational root and a continuum set of irrational solutions. An algorithm for the construction of solutions is proposed. We also describe the topological and metric properties of the set of all solutions. Some additional facts about the equations ν i (x) = x, i = 0, 2, are given.
ISSN:1027-3190