Hopficity and Co-Hopficity in Soluble Groups
We show that a soluble group satisfying the minimal condition for its normal subgroups is co-hopfian and that a torsion-free finitely generated soluble group of finite rank is hopfian. The latter property is a consequence of a stronger result: in a minimax soluble group, the kernel of an endomorphis...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 2004 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2004
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/164828 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Hopficity and Co-Hopficity in Soluble Groups / G. Endimioni // Український математичний журнал. — 2004. — Т. 56, № 10. — С. 1335–1341. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We show that a soluble group satisfying the minimal condition for its normal subgroups is co-hopfian and that a torsion-free finitely generated soluble group of finite rank is hopfian. The latter property is a consequence of a stronger result: in a minimax soluble group, the kernel of an endomorphism is finite if and only if its image is of finite index in the group.
Показано, що розв'язувана група, яка задовольняє умову мінімальності для її нормальних підгруп к кохопфовою і скінченнопороджена розв'язувана група скінченного рангу без скруту є хопфоною. Остання властивість є наслідком сильнішого результату: її мінімакснії розн'язувальній групі ядро ендоморфізму скінченне тоді і тільки тоді, коли його образ має скінченний індекс у групі.
|
|---|---|
| ISSN: | 1027-3190 |