Потенциальные поля с осевой симметрией и алгебры моногенных функций векторного аргумента. III
Одержано нові зображення потенціалу та функції течії для просторових потенціальних солено-їдальиих полів з осьовою симетрією. Вивчено основні алгебраїчно-аналітичні властивості моно-генних функцій векторного аргумента із значеннями в иескіичеиновимірній банаховій алгебрі парних рядів Фур'є та в...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 1997 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут математики НАН України
1997
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/164910 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Потенциальные поля с осевой симметрией и алгебры моногенных функций векторного аргумента. III / И.П. Мельниченко, С.А. Плакса // Український математичний журнал. — 1997. — Т. 49, № 2. — С. 228–243. — Бібліогр.: 12 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Одержано нові зображення потенціалу та функції течії для просторових потенціальних солено-їдальиих полів з осьовою симетрією. Вивчено основні алгебраїчно-аналітичні властивості моно-генних функцій векторного аргумента із значеннями в иескіичеиновимірній банаховій алгебрі парних рядів Фур'є та встановлено зв'язок цих функцій з осесиметричним потенціалом та функцією течії Стокса. Запропонований підхід до опису вказаних полів є аналогом апарату аналітичних функцій у комплексній площині при опису плоских потенціальних полів.
We obtain new representations of the potential and flow function of three-dimensional potential solenoidal fields with axial symmetry, study principal algebraic analytic properties of monogenic functions of vector variables with values in an infinite-dimensional Banach algebra of even Fourier series, and establish the relationship between these functions and the axially symmetric potential or the Stokes flow function. The developed approach to the description of the indicated fields is an analog of the method of analytic functions in the complex plane used for the description of two-dimensional potential fields.
|
|---|---|
| ISSN: | 1027-3190 |