Asymptotic solutions of the Dirichlet problem for the heat equation with impulses

We propose an algorithm for the construction of asymptotic expansions for solutions of the Dirichlet problem for the heat equation with impulses. Запропоновано алгоритм побудови асимптотичних розвинень для розв'язків задачі Діріхле для рівняння теплопровідності з імпульсною дією....

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2006
Main Author: Matarazzo, G.
Format: Article
Language:English
Published: Інститут математики НАН України 2006
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/164958
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Asymptotic solutions of the Dirichlet problem for the heat equation with impulses / G. Matarazzo // Український математичний журнал. — 2006. — Т. 58, № 3. — С. 427–430. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-164958
record_format dspace
spelling Matarazzo, G.
2020-02-11T11:13:33Z
2020-02-11T11:13:33Z
2006
Asymptotic solutions of the Dirichlet problem for the heat equation with impulses / G. Matarazzo // Український математичний журнал. — 2006. — Т. 58, № 3. — С. 427–430. — Бібліогр.: 5 назв. — англ.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/164958
517.9
We propose an algorithm for the construction of asymptotic expansions for solutions of the Dirichlet problem for the heat equation with impulses.
Запропоновано алгоритм побудови асимптотичних розвинень для розв'язків задачі Діріхле для рівняння теплопровідності з імпульсною дією.
en
Інститут математики НАН України
Український математичний журнал
Короткі повідомлення
Asymptotic solutions of the Dirichlet problem for the heat equation with impulses
Асимптотичні розв'язки задачі Діріхле для рівняння теплопровідності з імпульсною дією
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Asymptotic solutions of the Dirichlet problem for the heat equation with impulses
spellingShingle Asymptotic solutions of the Dirichlet problem for the heat equation with impulses
Matarazzo, G.
Короткі повідомлення
title_short Asymptotic solutions of the Dirichlet problem for the heat equation with impulses
title_full Asymptotic solutions of the Dirichlet problem for the heat equation with impulses
title_fullStr Asymptotic solutions of the Dirichlet problem for the heat equation with impulses
title_full_unstemmed Asymptotic solutions of the Dirichlet problem for the heat equation with impulses
title_sort asymptotic solutions of the dirichlet problem for the heat equation with impulses
author Matarazzo, G.
author_facet Matarazzo, G.
topic Короткі повідомлення
topic_facet Короткі повідомлення
publishDate 2006
language English
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Асимптотичні розв'язки задачі Діріхле для рівняння теплопровідності з імпульсною дією
description We propose an algorithm for the construction of asymptotic expansions for solutions of the Dirichlet problem for the heat equation with impulses. Запропоновано алгоритм побудови асимптотичних розвинень для розв'язків задачі Діріхле для рівняння теплопровідності з імпульсною дією.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/164958
citation_txt Asymptotic solutions of the Dirichlet problem for the heat equation with impulses / G. Matarazzo // Український математичний журнал. — 2006. — Т. 58, № 3. — С. 427–430. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT matarazzog asymptoticsolutionsofthedirichletproblemfortheheatequationwithimpulses
AT matarazzog asimptotičnírozvâzkizadačídíríhledlârívnânnâteploprovídnostízímpulʹsnoûdíêû
first_indexed 2025-11-27T01:42:46Z
last_indexed 2025-11-27T01:42:46Z
_version_ 1850791616445415424
fulltext UDC 517.9 G. Matarazzo (Salerno Univ., Italy) ASYMPTOTIC SOLUTIONS OF THE DIRICHLET PROBLEM FOR THE HEAT EQUATION WITH IMPULSES ASYMPTOTYÇNI ROZV’QZKY ZADAÇI DIRIXLE DLQ RIVNQNNQ TEPLOPROVIDNOSTI Z IMPUL|SNOG DI{G We propose an algorithm for the construction of asymptotic expansions for solutions of the Dirichlet problem for the heat equation with impulses. Zaproponovano alhorytm pobudovy asymptotyçnyx rozvynen\ dlq rozv’qzkiv zadaçi Dirixle dlq rivnqnnq teploprovidnosti z impul\snog di[g. 1. Introduction. The theory of impulsive differential equations [1] is an important part of the modern theory of differential equations which has many applications in practice. Till now, a lot of different problems connected with impulsive differential equations are studied. It has been found that the solutions of differential equations with impulses can demonstrate very complicated behaviour [1 – 5]. In the present paper, we study the problem of the construction of an asymptotic solution of the Dirichlet problem for the heat equation with impulses. 2. Formulation of the problem. Let us consider a differential heat equation with small parameter ε ∈ ( 0; ε0 ) of the form ∂ ∂ = ∂ ∂ + ( )u t u x f x t uε ε2 2 2 , , , , ( x, t ) ∈ Ω = ( 0; 1 ) × ( 0; + ∞ ), (1) under initial conditions u ( x, 0, ε ) = ϕ ( x, ε ), (2) boundary conditions u ( 0, t, ε ) = 0, u ( 1, t, ε ) = 0, t ∈ [ 0, + ∞ ), (3) and impulsive conditions at a fixed moment of time ∆ u ( x, t, ε ) | t = ti = u ( x, ti + 0, ε ) – u ( x, ti – 0, ε ) = Ii ( x, ε ), i ∈ N. (4) We suppose the fulfillment of the following assumptions: P1 . Functions f ( x, t, u, ε ), ϕ ( x, ε ), Ii ( x, ε ), i ∈ N, are infinitely differentiable with respect to their variables and can be represented as regular asymptotic expansions with respect to a small parameter ε ∈ ( 0; ε0 ). In particular, ϕ ( x, ε ) = ε ϕk k k x( ) = ∞ ∑ 0 , Ii ( x, ε ) = εk ik k xT ( ) = ∞ ∑ 0 . P2 . The nonperturbed problem ∂ ∂ = ( )u t f x t u, , , 0 , u ( x, 0, 0 ) = ϕ ( x, 0 ), ∆ u ( x, t, 0 ) | t = ti = u ( x, ti + 0, 0 ) – u ( x, ti – 0, 0 ) = Ii ( x, 0 ), i ∈ N, for any x ∈ ( 0; 1 ) ( x is considered as a parameter) possesses a solution u = u x t0( ), defined for any ( x, t ) ∈ [ 0; 1 ] × [ 0; + T ) (here, the case T = + ∞ is not excluded) which is infinitely differentiable for t ≠ ti , i ∈ N. © G. MATARAZZO, 2006 ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3 427 428 G. MATARAZZO P3 . The condition ′ ( )( )f x t u x tu , , , ,0 0 ≠ 0 takes place. P4 . The agreement condition ϕ0 ( 0, ε ) = 0 takes place. 3. Algorithm of asymptotic expansion. We seek a solution of problem (1) – (4) in the form of the asymptotic series u ( x, t, ε ) = u x t( ), , ε + Q u ( ξ, t, ε ) + Q* u ( ξ* , t, ε ), (5) where u x t u x t u x t u x t( ) = ( ) + ( ) + ( ) + …, , , , ,ε ε ε0 1 2 2 is the regular part of asymtotics and Q u ( ξ, t, ε ) = Q0 u ( ξ, t ) + ε Q1 u ( ξ, t ) + ε2 Q2 u ( ξ, t ) + … , Q* u ( ξ* , t, ε ) = Q*0 u ( ξ* , t ) + ε Q*1 u ( ξ* , t ) + ε2 Q*2 u ( ξ* , t ) + … are singular parts of asymptotics. Here, we denote ξ = x / ε, ξ* = ( 1 – x ) / ε. The functions Qk u ( ξ, t ), k ≥ 0, are supposed to be defined for ξ ∈ [ 0; ε– 1 ], t ≥ 0, and, at the same time, the functions Q*k u ( ξ* , t ), k ≥ 0, are supposed to be defined for ξ* ∈ [ 0; ε– 1 ], t ≥ 0. By the usual way, we obtain relations for defining terms of asymptotics (5). The terms of the regular part of asymptotics (5) may be found as solutions of the following problems: du dt f x t u0 0 0= ( ), , , , u x0 0( ), = ϕ0 ( x ), x ∈ [ 0; 1 ], ∆u x t t ti0( ) =, = Ii ( x, 0 ), i ∈ N, du dt f x t u u f x t u u uk u k k k= ( ) + ( … )−, , , , , , , ,0 0 1 10 , u xk ( ), 0 = ϕk ( x ), x ∈ [ 0; 1 ], ∆u x tk t ti ( ) =, = Tik ( x ), i ∈ N, where functions f x t u u uk k( … )−, , , , ,0 1 1 , k ≥ 1, are recurrently defined by values of u x t0( ), , u x t1( ), , … , u x tk − ( )1 , . Here, x ∈ [ 0; 1 ] is considered as a parameter. After definition of the regular part u x t( ), , ε of asymptotics (5), we can find the singular part Q u ( ξ, t, ε ) of asymptotic (5) which is defined as solutions of the following boundary-value problems: ∂ ∂ = ∂ ∂ + ( ) + − ( )( ) ( )Q u t Q u f t u t Q u f t u t0 2 0 2 0 0 00 0 0 0 0 0 ξ , , , , , , , , , Q0 u ( ξ, 0 ) = 0, ξ ∈ [ 0; ∞ ], (6) Q0 u ( 0, t ) = − ( )u t0 0, , t ∈ [ 0; ∞ ], lim ξ→∞ Q0 u ( ξ, t ) = 0 for any t ∈ [ 0; ∞ ]; ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3 ASYMPTOTIC SOLUTIONS OF THE DIRICHLET PROBLEM … 429 ∂ ∂ = ∂ ∂ + ( ) + ( )( )Q u t Q u f t u t Q u Q f tk k u k k 2 2 00 0 0 ξ ξ, , , , , , Qk u ( 0, ξ ) = 0, ξ ∈ [ 0; ∞ ], (7) Qk u ( 0, t ) = − ( )u t0 0, , t ∈ [ 0; ∞ ], lim ξ→∞ Qk u ( ξ, t ) = 0 for any t ∈ [ 0; ∞ ], where the functions Qk f ( ξ, t ), k ≥ 1, are recurrently defined by the standard procedure by values of the regular part u x t0( ), , u x t1( ), , … , u x tk − ( )1 , , x = ε ξ, of asymptotics (5). We can now proceed to the calculation of the singular part Q* u ( ξ, t, ε ) of asymptotics (5) which is defined as solutions of the following boundary-value problems: ∂ ∂ = ∂ ∂ + ( ) + + − ( ) +( ) ( )Q u t Q u f t u t Q u Q u f t u t Q u* * * *, , , , , , , ,0 2 0 2 0 0 0 0 01 1 0 1 1 0 ξ , Q*0 u ( ξ* , 0 ) = 0, ξ* ∈ [ 0; ∞ ], (8) Q*0 u ( 0, t ) = − ( )u t0 1, , t ∈ [ 0; ∞ ], lim *ξ →∞ Q*0 u ( ξ* , t ) = 0 for any t ∈ [ 0; ∞ ]; ∂ ∂ = ∂ ∂ + ( ) + ( )( )Q u t Q u f t u t Q u Q f tk k u k k * * * * * *, , , , , 2 2 01 1 0 ξ ξ , Q*k u ( 0, ξ* ) = 0, ξ* ∈ [ 0; ∞ ], (9) Q*k u ( 0, t ) = − ( )u t0 1, , t ∈ [ 0; ∞ ], lim *ξ →∞ Q*k u ( ξ* , t ) = 0 for any t ∈ [ 0; ∞ ], where the functions Q*k f ( ξ* , t ), k ≥ 1, are recurrently defined by the standard procedure by values of the regular part u x t0( ), , u x t1( ), , … , u x tk − ( )1 , and the singular part Q0 u ( ξ, t ), Q *0 u ( ξ* , t ), Q 1 u ( ξ, t ), Q *1 u ( ξ* , t ), … , Qk – 1 u ( ξ, t ), Q*k – 1 u ( ξ* , t ), x = 1 + ε ξ* , of asymptotics (5). 4. Main result. The following statements are true: Lemma 1. Additionally to assumptions P1 – P4, let us assume the fulfillment of the following conditions: 1) there exist positive values C0 and γ0 such that a solution Q0 u ( ξ, t ) o f problem (6) satisfies the inequality | Q0 u ( ξ, t ) | ≤ C0 e– γ0 ξ; 2) the derivative f t u t0 00 0 0( )( ), , , , is negative for all t ∈ [ 0; T ). Then, for any k ∈ N, there exist solutions Q k u ( ξ, t ) of problem (7) such that inequalities | Qk u ( ξ, t ) | ≤ Ck e– γk ξ are true for some Ck > 0, γk > 0. ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3 430 G. MATARAZZO Lemma 2. Additionally to assumptions P1 – P4, let us assume the fulfillment of the following conditions: 1) there exist positive values C*0 and γ*0 such that a solution Q*0 u ( ξ* , t ) of problem (8) satisfies the inequality | Q*0 u ( ξ* , t ) | ≤ C*0 e– γ *0 ξ *; 2) the derivative f t u tu( )( )1 1 00, , , , is negative for all t ∈ [ 0; T ). Then, for any k ∈ N, there exist solutions Q *k u ( ξ* , t ) of problem (9) such that inequalities | Q*k u ( ξ* , t ) | ≤ C*k e– γ *k ξ * are true for some C*k > 0, γ*k > 0. Theorem. Let the conditions of Lemmas 1, 2 be fulfilled. Then the series (5) is an asymptotic solution of problem (1) – (4), i.e., max Ω1 | u ( x, t, ε ) – uN ( x, t, ε ) | = O ( εN + 1 ), where Ω1 ⊂ ( 0; 1 ) × ( 0; T ) is a compact set and a functions uN ( x, t, ε ) is defined with the relation uN ( x, t, ε ) = ε ε εk k k k k N u x t Q u x t Q u x t[ ]( ) + ( ) + ( + ) = ∑ , , ,* 1 0 . 1. Samoilenko A. M., Perestyuk N. A. Impulsive differential equations // World Sci. Ser. Nonlinear Sci. Ser. A. – Singapore etc.: World Sci., 1995. – 14. – 468 p. 2. Samilenko A. M., Kaplun Yu. I., Samoylenko V. Hr. Singularly perturbed differential equations with impulses // Ukr. Math. J. – 2002. – 54, # 8. – P. 1089 – 1099. 3. Samoylenko V. Hr., Elgondyev K. K. On periodic solutions of linear differential equations with impulses // Ibid. – 1997. – 49, # 1. – P. 141 – 148. 4. Elgondyev K. K. On periodic solutions of impulsive systems // Uzbek Math. J. – 1999. – # 4. – P. 62 – 67. 5. Samoylenko V. Hr., Khomchenko L. V. Neumann boundary-value problem for singularly perturbed heat equation with impulses // Nonlinear Oscillations. – 2005. – 8, # 1. – P. 89 – 123. Received 06.09.2005 ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3