Long-range order in Gibbs lattice classical linear oscillator systems
The existence of the ferromagnetic long-range order (lro) is proved for Gibbs classical lattice systems of linear oscillators interacting via a strong polynomial pair nearest neighbor (n-n) ferromagnetic potential and other (nonpair) potentials that are weak if they are not ferromagnetic. A generali...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 2006 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2006
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/164967 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Long-range order in Gibbs lattice classical linear oscillator systems / W.I. Skrypnik // Український математичний журнал. — 2006. — Т. 58, № 3. — С. 388–405. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | The existence of the ferromagnetic long-range order (lro) is proved for Gibbs classical lattice systems of linear oscillators interacting via a strong polynomial pair nearest neighbor (n-n) ferromagnetic potential and other (nonpair) potentials that are weak if they are not ferromagnetic. A generalized Peierls argument and two different contour bounds are our main tools.
Доведено існування феромагнітного далекого порядку для гіббсівської класичної ґраткової системи лінійних осциляторів, що взаємодіють завдяки сильному парному поліноміальному феромагнітному потенціалу близьких сусідів та іншим (непарним) потенціалам, які слабкі, якщо не феромагнітні. При цьому використано узагальнений аргумент Пайєрлса та дві контурні нерівності.
|
|---|---|
| ISSN: | 1027-3190 |