Nonlinear-estimate approach to the regularity of infinite-dimensional parabolic problems

We show how the use of nonlinear symmetries of higher-order derivatives allows one to study the regularity of solutions of nonlinear differential equations in the case where the classical Cauchy-Liouville-Picard scheme is not applicable. In particular, we obtain nonlinear estimates for the boundedne...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2006
Main Authors: Antoniouk, A.Val., Antoniouk, A.Vict.
Format: Article
Language:English
Published: Інститут математики НАН України 2006
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/164994
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Nonlinear-estimate approach to the regularity of infinite-dimensional parabolic problems / A.Val. Antoniouk, A.Vict. Antoniouk // Український математичний журнал. — 2006. — Т. 58, № 5. — С. 579–596. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We show how the use of nonlinear symmetries of higher-order derivatives allows one to study the regularity of solutions of nonlinear differential equations in the case where the classical Cauchy-Liouville-Picard scheme is not applicable. In particular, we obtain nonlinear estimates for the boundedness and continuity of variations with respect to initial data and discuss their applications to the dynamics of unbounded lattice Gibbs models. Показано, яким чином застосування нелінійних симетрій похідних високого порядку дозволяє вивчати регулярність розв'язків нелінійних диференціальних рівнянь у випадку, коли класичну схему Коші - Ліувілля - Пікара неможливо застосувати. Зокрема, отримано нелінійні оцінки на обмеженість та неперервність варіацій за початковими умовами і розглянуто їх застосування до динаміки необмежених ґраткових гіббсівських систем.
ISSN:1027-3190