On the relation between measures defining the Stieltjes and the inverted Stieltjes functions

A compact formula is found for the measure of the inverted Stieltjes function expressed by the measure of the original Stieltjes function.

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Gilewicz, J., Pindor, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/165002
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the relation between measures defining the Stieltjes and the inverted Stieltjes functions / J. Gilewicz, M. Pindor // Український математичний журнал. — 2010. — Т. 62, № 3. — С. 327–331. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-165002
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1650022025-02-09T12:51:08Z On the relation between measures defining the Stieltjes and the inverted Stieltjes functions Про зв'язок між мірами, що визначають початкову та обернену функції Стільтьєса Gilewicz, J. Pindor, M. Статті A compact formula is found for the measure of the inverted Stieltjes function expressed by the measure of the original Stieltjes function. Встановлено формулу для міри оберненої функції Стільтьєса, що виражена через міру початкової функції Стільтьєса. 2010 Article On the relation between measures defining the Stieltjes and the inverted Stieltjes functions / J. Gilewicz, M. Pindor // Український математичний журнал. — 2010. — Т. 62, № 3. — С. 327–331. — Бібліогр.: 3 назв. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/165002 517.5 en Український математичний журнал application/pdf Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Gilewicz, J.
Pindor, M.
On the relation between measures defining the Stieltjes and the inverted Stieltjes functions
Український математичний журнал
description A compact formula is found for the measure of the inverted Stieltjes function expressed by the measure of the original Stieltjes function.
format Article
author Gilewicz, J.
Pindor, M.
author_facet Gilewicz, J.
Pindor, M.
author_sort Gilewicz, J.
title On the relation between measures defining the Stieltjes and the inverted Stieltjes functions
title_short On the relation between measures defining the Stieltjes and the inverted Stieltjes functions
title_full On the relation between measures defining the Stieltjes and the inverted Stieltjes functions
title_fullStr On the relation between measures defining the Stieltjes and the inverted Stieltjes functions
title_full_unstemmed On the relation between measures defining the Stieltjes and the inverted Stieltjes functions
title_sort on the relation between measures defining the stieltjes and the inverted stieltjes functions
publisher Інститут математики НАН України
publishDate 2010
topic_facet Статті
url https://nasplib.isofts.kiev.ua/handle/123456789/165002
citation_txt On the relation between measures defining the Stieltjes and the inverted Stieltjes functions / J. Gilewicz, M. Pindor // Український математичний журнал. — 2010. — Т. 62, № 3. — С. 327–331. — Бібліогр.: 3 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT gilewiczj ontherelationbetweenmeasuresdefiningthestieltjesandtheinvertedstieltjesfunctions
AT pindorm ontherelationbetweenmeasuresdefiningthestieltjesandtheinvertedstieltjesfunctions
AT gilewiczj prozvâzokmížmíramiŝoviznačaûtʹpočatkovutaobernenufunkcíístílʹtʹêsa
AT pindorm prozvâzokmížmíramiŝoviznačaûtʹpočatkovutaobernenufunkcíístílʹtʹêsa
first_indexed 2025-11-26T00:28:41Z
last_indexed 2025-11-26T00:28:41Z
_version_ 1849810670949761024
fulltext UDC 517.5 J. Gilewicz (Cent. Phys. Théor., France), M. Pindor* (Inst. Theor. Phys., Warsaw Univ., Poland) ON THE RELATION BETWEEN MEASURES DEFINING THE STIELTJES AND THE INVERTED STIELTJES FUNCTIONS ПРО ЗВ’ЯЗОК МIЖ МIРАМИ, ЩО ВИЗНАЧАЮТЬ ПОЧАТКОВУ ТА ОБЕРНЕНУ ФУНКЦIЇ СТIЛЬТЬЄСА A compact formula is found for a measure of the inverted Stieltjes function expressed by the measure of the original Stieltjes function. Встановлено формулу для мiри оберненої функцiї Стiльтьєса, що виражена через мiру початкової функ- цiї Стiльтьєса. In 1991 Gilewicz [1] posed an open problem of giving an explicit expression for a measure of the inverted Stieltjes function. Peherstorfer [2] gave an answer to this question for a certain class of measures for Stieltjes functions. Here we present a completely different derivation than the one given in [2], actually a quite elementary one, which is also valid for more general types of measures. Let us recall that if g is a Stieltjes function z ∈ C \ (−∞,−R] : g(z) = 1/R∫ 0 dµ(t) 1 + tz (1) then it is well known that the function h defined by g(z) = g(0) 1 + zh(z) (2) is also a Stieltjes function (see, e.g., [3]). The function h is called the inverted Stieltjes function. Formula (1) defines the function which is analytic in the whole complex z- plane, except for the cut between −R and −∞. Therefore h has the same analytic properties. However if we want to write h in a similar form, namely h(z) = 1/R∫ 0 dν(t) 1 + tz , then it is not quite obvious what is the relation between the measures dµ and dν. When the relation (2) is reversed, we get h(z) = g(0) zg(z) − 1 z and using (1), it can be written as h(z) = ∫ 1/R 0 tdµ(t) 1+tz∫ 1/R 0 dµ(t) 1+tz . (3) *M. Pindor passed away in 2003. c© J. GILEWICZ, M. PINDOR, 2010 ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 3 327 328 J. GILEWICZ, M. PINDOR ! 1/R C C Cc " Fig. 1. The contour C for the Cauchy integral and contours Cc and Cρ into which C is deformed. In order to find an integral representation of h we use the standard Cauchy formula. However we will work in the ζ-plane where ζ = −1/z, because then both branch points of h lie inside a bounded domain. Therefore, if we set h̃(ζ) = h(−1/ζ), then formula (3) becomes h̃(ζ) = ∫ 1/R 0 tdµ(t) ζ−t∫ 1/R 0 dµ(t) ζ−t . (4) On the other hand h̃(ζ) = 1 2πi ∫ C h̃(ξ)dξ ξ − ζ , where the contour C encircles counterclockwise the point ζ and does not contain the points 0 and 1/R (see Fig. 1). Now (see Fig. 2) we can deform C in such a way that it becomes the contours Cc (encircling both branch points and the cut joining them, clockwise) and Cρ (being a circle of radius ρ > 1/R where we move counterclockwise). Thus h̃(ζ) = 1 2πi ∫ Cc h̃(ξ)dξ ξ − ζ + ∫ Cρ h̃(ξ)dξ ξ − ζ . Obviously ∫ Cρ h̃(ξ)dξ ξ − ζ = 2π∫ 0 ρieiϕh̃(ρeiϕ)dϕ ρeiϕ − ζ . By (4), if ξ →∞, then h̃(ξ)→ ∫ 1/R 0 tdµ(t)∫ 1/R 0 dµ(t) . Therefore when ρ→∞ ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 3 ON THE RELATION BETWEEN MEASURES DEFINING THE STIELTJES . . . 329 C1r C+ C– C2r 1/R Fig. 2. The final form of the contour Cc. ∫ Cρ h̃(ξ)dξ ξ − ζ → ∫ 1/R 0 tdµ(t)∫ 1/R 0 dµ(t) 2π∫ 0 idϕ. On the other hand the contour Cc can be split into four paths: C+, C1r, C− and C2r as indicated on Fig. 2. The contours C1r and C2r are circles of radius r arround the points 0 and 1/R, respectively. When r → 0, integrals over C+ and C− become integrals between 0 and 1/R over the upper and lower lips of the cut joining the branch points, while integrals over C1r and C2r converge to 0. As a consequence, we deduce h̃(ζ) = ∫ 1/R 0 tdµ(t)∫ 1/R 0 dµ(t) + 1 2πi  ∫ C+ h̃(z)dz z − ζ + ∫ C− h̃(z)dz z − ζ . Our task now is to express the difference of integrals over the upper and lower lips of the cut by an integral containing the measure dµ defining the function g. If the bounded and nondecreasing function µ is differentiable, then dµ(t) may be written in the form µ′(t)dt and we may directly use (4). In the following we shall use dµ(t) = µ′(t)dt for more general situations meaning that we consider such dµ(t) that there exists a distribution µ′(t) with the necessary properties for the existence of the integrals considered. The same for dν(t) and ν′(t). In particular we consider a case where µ contains a contribution from a Heaviside function, i.e., we take µ(t) = GH(t) + σ(t), H(t) = 1, for t > 0, 0, for t ≤ 0, where now σ has no jump at t = 0. In this case (4) becomes h̃(ζ) = ∫ 1/R 0 tdσ(t) ζ−t G ζ + ∫ 1/R 0 dσ(t) ζ−t . (5) ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 3 330 J. GILEWICZ, M. PINDOR Using now the well known Sokhotskij – Plemelj formulae for (5) with ζ = x± iε for the sum of integrals over C+ and C− we get∫ C+ h̃(z)dz z − ζ + ∫ C− h̃(z)dz z − ζ = = − 1/R∫ 0 σ′(x) [ G+ ∫ 1/R 0 σ′(t)dt ] [ G x − ∫ 1/R 0 σ′(t)−σ′(x) t−x dt− σ′(x) log ( 1 Rx − 1 )]2 + π2(σ′(x))2 dx x− ζ . Going back to z variable we get h(z) = ∫ 1/R 0 tσ′(t)dt G+ ∫ 1/R 0 σ′(t)dt + G+ 1/R∫ 0 σ′(t)dt × × − 1/R∫ 0 σ′(x)dx x [( G x − ∫ 1/R 0 σ′(t)−σ′(x) t−x dt− σ′(x) log ( 1 Rx − 1 ))2 + π2(σ′(x))2 ]+ + 1/R∫ 0 σ′(x)dx x(1 + zx) [( G x − ∫ 1/R 0 σ′(t)−σ′(x) t−x dt− σ′(x) log ( 1 Rx − 1 ))2 + π2(σ′(x))2 ] . This formula can be stated in a more compact form using the fact that G x − 1/R∫ 0 σ′(t)− σ′(x) t− x dt− σ′(x) log ( 1 Rx − 1 ) ± πiσ′(x) = 1/R∫ 0 dµ(t) x± iε− t , (6) where, by (1), we immediately see that the right-hand side is just g(−1/z)/z for z = = x± iε. Another simplification comes from the following observation: 1/R∫ 0 σ′(x)dx x [( G x − ∫ 1/R 0 σ′(t)−σ′(x) t−x dt− σ′(x) log ( 1 Rx − 1 ))2 + π2(σ′(x))2 ] = − 1 2πi  1/R∫ 0 dx x ( G x − PV ∫ 1/R 0 σ′(t)dt t−x + πiσ′(x) ) − − 1/R∫ 0 dx x ( G x − PV ∫ 1/R 0 σ′(t)dt t−x − πiσ′(x) ) . (7) The denominators of the two integrals above are x G x − 1/R∫ 0 σ′(t)dt t− x  = x 1/R∫ 0 dµ(t) x− t = g ( − 1 x ) ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 3 ON THE RELATION BETWEEN MEASURES DEFINING THE STIELTJES . . . 331 for x just below and just above the interval [0, 1/R] (i.e., over C− and C+ (see (6))). Therefore the integrals on the right-hand side of (7) may be written as 1 2πi ∫ Cρ dz z ( G z − ∫ 1/R 0 σ′(t)dt t−z ) − 1 2πi lim r→0 ∫ C1r dz z ( G z − ∫ 1/R 0 σ′(t)dt t−z ) (8) (see Fig. 2) because an integral over the small circle around 1/R converges to 0 with the radius r of that circle. Now, the integral over Cρ can be deformed to a large circle of radius ρ going to∞. In this limit the integral is 2πi ∫ 1/R 0 tσ′(t)dt( G+ ∫ 1/R 0 σ′(t)dt )2 . To understand what is the limit of the integral over C1r when r → 0, we recall that z = reiϕ on C1r. Looking now at the explicit form of the denominator of the integrand in (8) and using lim r→0 reiϕ 1/R∫ 0 σ′(t)dt t− reiϕ = 0, it follows that if G 6= 0 then the limit of the integral over C1r is 0. The same is true if G = 0, and lim r→0 1/R∫ 0 σ′(t)dt t− reiϕ =∞. Finally, if the above limit is finite, then lim r→0 ∫ C1r dz g (−1/z) = 2πi∫ 1/R 0 σ′(t)dt t . Therefore, since G+ 1/R∫ 0 σ′(t)dt = g(0), then our final formulae are either h(z) = g(0)  1 2πi lim r→0 ∫ C1r dξ G+ ξ ∫ 1/R 0 dσ(t) ξ−t + 1/R∫ 0 tdσ(t) (1 + tz) |g (−1/t)|2  or ν′(t) = g(0) δ(t) lim r→0 1 2πi ∫ C1r dξ G+ ξ ∫ 1/R 0 dσ(u) ξ−u + tσ′(t) |g (−1/t)|2 , where δ(t) = H ′(t) is the Dirac distribution. In particular this result shows that if the measure dµ defining g contains a δ (Dirac) at the origin (that is, if G 6= 0), then the measure dν defining h does not contain δ at the origin, and vice-versa. 1. Gilewicz J. The open problems // J. Comput. Appl. Math. – 1993. – 48. – P. 230. 2. Peherstorfer F. The open problems // Ibid. – 1993. – 48. – P. 230 – 233. 3. Gilewicz J. Approximants de Padé // Lect. Notes Math. – 1978. – 667. – 207 p. Received 01.12.09 ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 3